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Abstract

In a chaotic dynamical system, small deviations from given ini-
tial conditions produces large changes over time. This suggests that
chaotic systems are controllable by making small changes initially.
The solar system is a somewhat chaotic dynamical system, so maybe
humanity can control its evolution to produce desired effects.

The specific idea of this article is to move the planet Mars to an
orbit at the same distance from the sun as the earth’s orbit. This
would make Mars warmer, which might make it more habitable.

The scheme is to use a tame asteroid that makes several thousand
encounters with Mars, Venus and Jupiter to exchange energy and
angular momentum among these planets, thus moving Mars to the
desired orbit. Conservation of both energy and angular momentum
requires that two other planets besides Mars be used.

A tame asteroid is one that makes repeated encounters with plan-
ets that magnify small perturbations of its orbit. The object is to
achieve the goal of moving Mars with minimal total Awv, i.e. minimal
rocketry.



Moving Mars will take some tens of thousands of years, but not
millions of years

1 Chaos and controllability

Consider a system governed by systems of differential equations that evolves
chaotically. Thus small variations in initial conditions are amplified to pro-
duce large changes in later states. Suppose humans can make small purpose-
ful changes. Then perhaps the later states can be controlled. Suppose some
initial conditions for a system are specified, and we can compute the future
history. Small deviations from the initial conditions grow exponentially with
time. Thus making a large change with a very small expenditure of energy
requires a long time, but the time grows only logarithmically with the in-
verse of the energy expended. We can ask what states are reachable by small
changes in initial conditions.

Take the solar system as an example. There are certain integrals of the
motion of the solar system as a whole, e.g. energy and angular momentum.
It is clear that we cannot change the total energy of the system by more than
the energy we have available to expend. However, we can in principle change
the energy of one planet at the expense of energy of some others.

Angular momentum is also conserved, but it isn’t obvious to me what the
trade-off is between expending energy to change angular momentum. Taking
a mass m a distance d from the sun allows making a change of angular
momentum of mAvd. If we want the changed angular momentum to be
effective in the inner solar system, then Av must not be so large that the
mass escapes. The time for the mass to return to the inner solar system is
proportional to ds.

As a concrete problem, consider moving Mars to an orbit at the same

!This  article is an  elaboration of a web page (http://www-
formal.stanford.edu/jmc/future/mars.html) put up for my students in a class in
Technological Opportunities for Humanity at Stanford University. It may change.

2This conclusion depends on regarding the solar system as isolated. If we consider a
large system involving Alpha Centauri and our own solar system, we can imagine increasing
our solar system’s energy by taking energy from the Alpha Centauri system. It seems
apparent that this would take a very long time. If it were determined to take more
than (say) 101°0 years, then we could regard the energy of our own system as essentially
unchangeable. Actually it might take only tens or hundreds of thousands of years.



distance from the sun as the earth, keeping it on the other side of the sun
from the earth to eliminate gravitational interaction with the earth. This
would make Mars warmer, which would facilitate human settlement.

2 A tame asteroid

The idea is to use an asteroid to transfer energy and angular momentum
among Mars, Jupiter and Venus in a way that makes Mars move closer to
the sun. We would expect Venus and Jupiter to move further away, but not
much. We’'ll see how the mathematics turns out. We hope to do this with
only incidental Av applied to the asteroid by rockets.

The largest asteroid is Ceres, which has a mass about 170%th that of Mars.
The most favorable encounter of Ceres with Mars is when Ceres comes as
close to Mars as possible and has its velocity reversed in the Mars-centered co-
ordinate system. The Awv of Ceres is then approximately the escape velocity
from Mars. [We'll give the details later]. The Av given to Mars is then
ﬁ of this escape velocity. Actually, the encounters will not usually be so
favorable, so there will be some efficiency factor less than 1.0. The escape
velocity from Mars is about 5,100 meters per second, so a Av for Mars of
24 km/sec would require at least 4,800 encounters. If we imagine that the
orbital period of an asteroid within the orbit of Jupiter is about 10 years,
then we are talking about some multiple of 48,000 years. Very likely, our
descendants will become interested in starting such a project only after they
have had a technological civilization for some tens of thousands of years.

Ceres is the largest asteroid, but it looks like would be very expensive to
get Ceres out of its very stable orbit. Therefore, we propose using an asteroid
from the Kuiper belt which would be much more easy to manipulate at first.
(This idea belongs to (DGKOT)).) The biggest of these isn’t known yet, but
we can imagine it to be %th the mass of Ceres.

We want a tame asteroid.

Asteroids large enough to have significant gravitational effects are expen-
sive to move much with feasible rockets. Therefore, we want an asteroid
orbit that passes by many planets. Passing close to a planet should amplify
any perturbation of the orbit. The earlier the perturbation can be made
the greater the amplification. Note that you get no amplification out of a
full Keplerian ellipse about the sun, because the ellipical orbit amounts to
a focussing effect. A small perturbation now will cause a slightly changed



ellipse that will repeat itself unless there is a further perturbation.

The one effect that does grow with time in a perturbed elliptical orbit
is the time change AT of arrival at a given point. If the period is changed,
then the perturbation will grow linearly with time. This effect can be used
to adjust the phase of the next encounter of the asteroid with the orbit of
the planet. It looks like by waiting long enough we can achieve the next
encounter with an arbitrarily small Av of the asteroid.

The first mathematical question is whether there can be a tame asteroid.
Ideally its orbit would, if unperturbed, graze planets for the indefinite future.
Let’s call this a tame orbit. The second question is whether an early enough
small perturbation could make the asteroid switch to a different tame orbit. If
so, the third question is what is the set of tame orbits reachable from an initial
orbit. As a first approximation to these questions we regard the asteroid as
having infinitesimal mass, so the planets themselves are not perturbed.

The next main question arises when the finite mass of the asteroid is
taken into account. What class of planetary configurations can be reached
with an arbitrarily small tame asteroid? Can these configurations be reached
with an arbitrarily small Av given enough time?

The specific question is whether an asteroid from the Kuiper belt can be
tamed and used to move Mars to an orbit on the opposite side of the sun at
the earth’s distance from the sun.

3 Conservation of Energy and Angular Mo-
mentum

Since the asteroid is small compared to planets, and our goal is to directly
apply very little total Av for the asteroid, the main effect is exchange of
energy and angular momentum among the three planets.

Before trying to design orbits for the tame asteroid, we compute the
changes in the orbits of Jupiter and Venus required to move Mars to one AU
from the sun. We assume that energy and angular momentum are conserved,
i.e. that the asteroid itself overall contributes nothing, because of its small
size.

Here are some equations in which we assume that the planets have circular
orbits. We derive relations between the energy &, the angular momentum h
and the distance of a planet from the sun. We use the speed v of the planet



in its orbit as an intermediate variable.
We start with equations for a single planet in a circular orbit.
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Having expressed £ in terms of h, we are ready to write the conservation
laws for the total energy £ and the total angular momentum h. We use
subscripts for the quantities associated with the three planets.

Conservation of energy for the three planets, e.g. Mars, Venus and Jupiter
gives for the new configuration

E+E+E=E, 9)

where £ is the original total energy.
Conservation of angular momentum gives for the new configuration

hl —+ h2 + h3 - h, (10>



where h is the original total angular momentum.

We assume that planet 1, e.g. Mars, is to be moved to a desired circular
orbit, and therefore we know &; and h;. We need to solve for &, &, hs, and
hs. We use () to express the energies in terms of the angular momenta, so
@) then becomes

miud | miud  miud
2h? 2h3 2h3
() and () must be solved for hy and hg, which will then allow deter-

mining 7o and r3 by substituting in ().
These equations have the form
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Solving these equations for moving Mars to 1.0 AU with the aid of Venus
and Jupiter yields

new Venus distance = 1.99886e+09 compared to 1.07700e+11

new Jupiter distance = 7.79062e+11 compared to ;7.78000e+11

Venus comes out distressingly close to the sun, whose radius is 6.96000e+-08.
Oh well, nobody we know lives on Venus.

All distances are in meters.

4 A scheme with minimal total Av

Consider an asteroid that starts very far out. The further the better as
concerns energy spent on adjusting the orbit of the asteroid, but the further
out the longer the whole process will take. The asteroid makes one encounter
with a planet per trip into the inner solar system. On successive trips it
encounters Mars, Venus and Jupiter but not necessarily in a fixed order.
The encounters are on the correct side to get the sign of the Av of the
planet correct. The distance of the encounter from the planet is large enough
so that the asteroid will come back out again after the encounter. The



successive encounters arranged so that energy and angular momentum are
transferred in the correct proportions in two senses. The first sense is that
the asteroid should always have its perihelion inside the orbit of Venus and its
aphelion way out. The second sense is that energy and angular momentum
are exchanged in the correct ratio among the three planets. Because of
conservation of energy and angular momentum, these two conditions will
agree.

When the asteroid is very far out very little Awv is required to adjust the
phase of its next planetary encounter. In the limit of the asteroid going to
infinity, zero Av is required. Because there is only one encounter per trip,
only one condition has to be satisfied. The adjustment can take into account
the inclination of the orbit of the planet.

5 Differential equations

It is interesting to see how ry and r3 vary as r is varied but keeping the total
energy and the total angular momentum of the three planets constant. As
usual, we preserve circular orbits.

Conservation of energy gives
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We can solve ([4) and ([[H) for dry and drs, giving
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Since the 2 and the 3 subscripts play symmetrical roles, we have
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6 Remarks and Acknowledgments

Consider the possibility that introducing an arbitrarily small tame asteroid
could throw a planet out of the solar system. This would be a different kind
of instability than those that have been so far considered. It would be of
mathematical interest to prove that a system consisting of a sun and three
planets could be disrupted by a single arbitrarily small tame asteroid.

Notes:

1. Another way would use multiple asteroids from the Kuiper belt or
even the Oort cloud. Maybe no Jupiter or Venus, and each asteroid makes
a single pass and is kicked out of the solar system. Many can be en route at
once. I suspect several times the mass of Mars will be required. specifically
in the ratio of the escape velocity from a solar orbit at Mars distance from
the sun to the Mars escape velocity. A single Jupiter pass may improve the
numbers.

2. It looks like a lot can be worked out by considering single collisions.
For example, suppose an asteroid from far out has an elastic collision with
Mars. It will take energy and angular momentum from Mars. I suppose that
if it were to collide again with Mars it would tend to give back what it took.
How does this modify if we have an intermediate collision with Jupiter or
Venus? In the end we need both, but let’s see what happens with one.

3. It may be a lot easier to move Mars than the above considerations
suggest. The solar system is a lot more chaotic, even in the short term than
was thought 10 years ago. I found (PC05) very informative about exotic
orbits as applied to spacecraft and as observed and calculated for the short
period comet Oterma. Whether this would help move Mars would require



difficult mathematics and computations, at least by present standards. Our
descendants my find the matter obvious.

Tom Costello commented usefully on an early version of this article. I
have learned from (DGKOT), and its ideas have triggered further thinking,
as has discussion with Don Korycansky and Greg McLaughlin. R. William
Gosper used Macsyma to solve the quartic equations.
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