\documentclass[]{article} %\usepackage[]{} \usepackage{html} \begin{document} \title{ The Mutilated Checkerboard in Set Theory } \author{ John McCarthy\\Computer Science Department\\Stanford University\\jmc@cs.stanford.edu \\http://www-formal.stanford.edu/jmc/ % insert author(s) here } \date{\today} % optional \maketitle An 8 by 8 checkerboard with two diagonally opposite squares removed cannot be covered by dominoes each of which covers two rectilinearly adjacent squares. We present a set theory description of the proposition and an informal proof that the covering is impossible. While no present system that I know of will accept either the formal description or the proof, I claim that both should be admitted in any \emph{heavy duty set theory}.\footnote{The Mizar proof checker accepts the definitions essentially as they are, but the first proof in Mizar is 400 lines.} We have the definitions \begin{equation} Board = Z8 \times Z8, \label{board} \end{equation} \begin{equation} mutilated\mbox{-}board = Board - \{(0,0),(7,7)\}, \label{mutilated1} \end{equation} \begin{equation} \begin{array}{l} domino\mbox{-}on\mbox{-}board(x) \equiv (x \subset Board) \land card(x) =2 \\ \land (\forall x1\ x2)(x = \{x1,x2\} % \land (\forall x1\ x2)(x1 \not= x2 \land x1 \in x \land x2 \in x \\ \rightarrow adjacent(x1,x2)) \end{array} \label{domino} \end{equation} % and \begin{equation} \begin{array}{l} adjacent(x1,x2) \equiv |c(x1,1) - c(x2,1)| =1 \\ \land c(x1,2) = c(x2,2) \\ \lor |c(x1,2) - c(x2,2)| =1 \land c(x1,1) = c(x2,1). \end{array} \label{adjacent} \end{equation} % If we are willing to be slightly tricky, we can write more compactly \begin{equation} adjacent(x1,x2) \equiv |c(x1,1) - c(x2,1)| + |c(x1,2) - c(x2,2)| = 1, \label{adjacent1} \end{equation} % but then the proof might not be so obvious to the program. Next we have. \begin{equation} \begin{array}{l} partial\mbox{-}covering(z) \\ \equiv (\forall x)(x \in z \rightarrow domino\mbox{-}on\mbox{-}board(x)) \\ \land (\forall x\ y)(x \in z \land y \in z \rightarrow x = y \lor x \cap y = \{\}) \end{array} \label{covering} \end{equation} \noindent \textbf{Theorem}: \begin{equation} \lnot (\exists z)(partial\mbox{-}covering(z) \land \bigcup z = mutilated\mbox{-}board) \label{theorem} \end{equation} \noindent \textbf{Proof:} We define \begin{equation} x \in Board \rightarrow color(x) = rem(c(x,1) + c(x,2),2) \label{color} \end{equation} \begin{equation} \begin{array}{l} domino\mbox{-}on\mbox{-}board (x) \rightarrow \\ (\exists u\ v)(u \in x \land v \in x \land color(u) = 0 \land color(v) = 1), \end{array} \label{colordomino} \end{equation} \begin{equation} \begin{array}{l} partial\mbox{-}covering(z) \rightarrow \\ card(\{u \in \bigcup z|color(u) =0\}) \\ = card(\{u \in \bigcup z|color(u) =1\}), \end{array} \label{eqcolor} \end{equation} \begin{equation} \begin{array}{l} card(\{u \in mutilated\mbox{-}board|color(u) = 0\}) \\ \not= card(\{u \in mutilated\mbox{-}board|color(u) = 1\}), \end{array} \label{mutilated} \end{equation} % and finally \begin{equation} \lnot (\exists z)(partial\mbox{-}covering(z)\ \ \land\ \ mutilated\mbox{-}board = \bigcup z) \label{theorem-again} \end{equation} \noindent \textbf{Q.E.D.} \end{document}