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You Could Learn a Lot from a Quadratic:
Newton Squares the Circle
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“Newton’s Method” for the iterative approximation of
square roots—not just on the real line, but also in the
complex plane—provides one of the most beautiful and
elegant applications of ‘linear fractional transformations,’
also known as ‘Möbius transformations.’

Briefly, Newton’s Method for the square root of the real
numberN consists of guessing an initial approximation
z0, and then successively computing the members of the
sequencez1 = (z0 + N/z0)/2, z2 = (z1 + N/z1)/2, ...,
zn+1 = (zn + N/zn)/2. As we have discussed in previ-
ous columns, this iteration converges rapidly to±

√
N so

long asz0 6= 0, for positiveN , realz0.

But the real beauty and understanding of Newton’s
method becomes evident by looking at its operation in
the complex plane. In other words, we will consider
the action of the Newton iteration forcomplexnumbers
zn = xn + iyn. We will see that Newton’s square root
method consists of a Möbius transformation of the ini-
tial guess to a new “coordinate system” for the complex
plane, followed by a number of simplesquaringsof the
transformed initial guess, followed by the inverse Möbius
transformation back to the original coordinate system.

We must first review a few properties of complex num-
bers. A complex numberz may be expressed in either
rectangular form asz = x + iy, or in polar form as
z = |z|eiθ = |z|(cos θ+ i sin θ), where|z| is theabsolute
valueof z, i.e., |z| = |x + iy| =

√

x2 + y2, andθ is the
arctangentof y/x, i.e.,θ = atan(y/x) = atan2(y, x).

If we square a complex number, we getz2 = (x +
iy)2 = (x2 − y2)+ i(2xy) in rectangular form, andz2 =
(|z|eiθ)2 = |z|2ei2θ in polar form. Thus, when squaring
a complex number in polar form, we note that its (real)
absolute value issquared, and its angleθ is doubled.

Consider, for example, those complex numbers whose
absolute value is exactlyone, i.e., numbersz such that
|z| = 1. These numbers form theunit circle in the com-
plex plane. In this case,z = |z|eiθ = eiθ, soz is exactly
representable as a pure imaginary exponential. For these

complex numbers,z = eiθ = cos θ + i sin θ, so that

z2 = ei2θ

= cos 2θ + i sin 2θ

= (cos θ + i sin θ)2

= (cos2 θ − sin2 θ) + i(2 cos θ sin θ)

This equation trivially shows the classic “double an-
gle” formulas so laboriously memorized by high school
trigonometry students.

Squaring a complex numberz has the following
property—if the number|z| > 1, then|z2| > |z| > 1,
and additional squarings will grow the absolute value to-
wards infinity—i.e.,|z2

n | grows very fast. Similarly, if
|z| < 1, then|z2| < |z| < 1, and additional squarings
will shrink the absolute value towards zero—i.e.,|z2

n |
shrinks very fast. Finally, if|z| is exactlyone, then squar-
ing z will not change this, andz2

n

will remain on the
unit circle for all n > 1. Newton’s square root method
makes essential use of this growing/shrinking property of
squaring to converge quickly to the correct value.

We are particularly interested in sets of complex num-
bers whose absolute values are all the same—these form
concentriccirclesabout the origin. The squaring function
maps one such circle into a second such circle, with the
mapping “covering” the image circle twice. If we square
again, we map the original circle into a final circlefour
times, and if we square the original circlen times, we
map the original circle into a final circle2n times.

If we invert a general complex number—i.e., perform
the operationz → 1/z, then in polar form this operation
becomes|z|eiθ → (1/|z|)e−iθ. For the case where|z| =
1, 1/z = (1/|z|)e−iθ = e−iθ, so that1/z is identical to
theconjugatēz = x − iy of z = x + iy.

The next complex operation we will need is that of
‘linear fractional transformation’ or ‘Möbius transforma-
tion,’ for short. A Möbius transformation transformsz →
(Az+B)/(Cz+D), whereA, B, C, andD are complex
numbers, and we will need the additional condition that
AD − BC 6= 0. These transformations are elegant and
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important because they are one-to-one and onto functions
of the complex plane extended with the additional point
∞ = 1/0. These transformations have inverses—e.g.,
the inverse transformation toz → (Az + B)/(Cz + D)
is z → (Dz − B)/(−Cz + A):

A(Dz − B)/(−Cz + A) + B

C(Dz − B)/(−Cz + A) + D

=
A(Dz − B) + B(−Cz + A)

C(Dz − B) + D(−Cz + A)

=
ADz − AB − BCz + AB

CDz − BC − CDz + AD

=
(AD − BC)z

AD − BC

= z

Working with Möbius transforms as ratios works, but
we can see the properties much more clearly if we write
these transforms as2 × 2 matrices:

(

A B
C D

)(

z
1

)

=

(

Az + B
Cz + D

)

Once we have this bidirectional mapping between
Möbius transformations and matrices, the other proper-
ties of Möbius transformations become obvious. Thus,
the requirement thatAD−BC 6= 0 is simply the require-

ment that thedeterminantof the2× 2 matrix

(

A B
C D

)

be non-zero, so that the matrix has an inverse. Thus, the
inverse of this matrix is

1

AD − BC

(

D −B
−C A

)

However, since we intend to form theratio of the two
elements of the final column matrix, we can safely ignore
any “scale factors”—so long as any such scale factor (in
this caseAD − BC) is non-zero.

One of the truly remarkable properties of Möbius trans-
forms is that theypreserve circles—i.e., givenanycircle
in the complex plane, a Möbius transform will transform
that circle into another circle. For this property to work,
however, we must define “circles” as including the lim-
iting case ofstraight lines, which are circles having an
“infinite radius.”

For example, the transformz → (z−1)/(z +1) trans-
forms the imaginary (or “y”) axis into the unit circle—
i.e.,0 transforms into−1, ±i transforms into±i, and∞
transforms into1.

Proving that Möbius transforms preserve circles is
a bit tricky, since Möbius transforms donot preserve
the centersof the circles. Thus, the center of a circle
doesnot usually map into the the center of the Möbius-
transformed circle. As a result, one cannot simply trans-
form the origin to the center of the circle and show that
a transformed rotating clock hand sweeps out the trans-
formed circle.

There is another characterization of a circle, however,
that was known to the ancient Greeks, but not to most
modern high school students. This characterization de-
scribes a circle as the locus of points the ratio of whose
distance to two given fixed points is a constant. Thus, we
start with two arbitrary pointsP andQ in the plane, and
then find those pointsZ such thatd(Z, P )/d(Z, Q) = k,
wherek is a real (positive) constant andd(Z, P ) means
the (Euclidean) distance between the pointZ and the
pointP . The locus of these pointsZ will be a circle or a
straight line.

We will now prove this fact twice—once in traditional
x, y coordinates, and once in complex numbers. Hope-
fully, you will agree that the complex number formulation
is much shorter and sweeter.

Recall that the equation of a circle in thex, y plane is
in the form(x−Ox)2 +(y−Oy)2 = r2, where(Ox, Oy)
is the center of the circle, andr is the radius of the circle.
If we now form the ratio of the distances from(x, y) to
P = (Px, Py) andQ = (Qx, Qy), respectively, we get
by brute algebraic force:

√

(x − Px)2 + (y − Py)2
√

(x − Qx)2 + (x − Qy)2
= k

Squaring both sides, we get

(x − Px)2 + (y − Py)2

(x − Qx)2 + (y − Qy)2
= k2

Clearing fractions, we get

(x − Px)2 + (y − Py)2 = k2(x − Qx)2 + k2(y − Qy)
2.

Without even finishing this derivation, we notice that the
coefficients of bothx2 andy2 are the same (1 − k2), so
that if the radius squared of the resulting equation is pos-
itive, we will have a “real” circle.

Let us now consider the same derivation in complex
numbers. We know that the “length” of a complex num-
ber z = x + iy is the distance fromz to the origin, or
|z| =

√

x2 + y2 =
√

zz̄ =
√

(x + iy)(x − iy). So the
equation of a circle in complex coordinates is|z−O| = r,
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whereO is the center andr > 0 is the radius. This equa-
tion is more usually written as

|z − O|2 = (z − O)(z̄ − Ō)

= [(x − Ox) + i(y − Oy)]

[(x − Ox) − i(y − Oy)]

= (x − Ox)2 + (y − Oy)2

= r2

So the complex formulation of a circle is identical to
the Cartesian formulation. We can now go back to our
ratio formulation for a circle:

|z − P |2
|z − Q|2 = k2

Clearing fractions, we have

|z − P |2 = k2|z − Q|2
∣

∣

∣

∣

z − P − k2Q

1 − k2

∣

∣

∣

∣

2

=
|P − k2Q|2
(1 − k2)2

− |P |2 − k2|Q|2
1 − k2

∣

∣

∣

∣

z − P − k2Q

1 − k2

∣

∣

∣

∣

2

=
k2|P − Q|2
(1 − k2)2

=

( |k||P − Q|
1 − k2

)2

= r2

Thus, in the general case, we have a circle of positive
radius|P −Q||k|/(1− k2) centered at(P − k2Q)/(1−
k2). If k = 0, then we have a circle of zero radius cen-
tered atP , while if k = ±1, we have a circle of infinite
radius—i.e., a straight line perpendicularly bisecting the
line PQ. Note that the sign ofk is irrelevant, and we can
therefore take it to be positive.

Now we can use this ratio characterization of circles to
easily prove that Möbius transforms preserve circles. We
simply plug in the result of the transformation and see
that it is still the ratio of distances, as before.

Consider the circle defined by the two pointsP , Q and
the ratiok. Then |z − P |2 = k2|z − Q|2 is a circle.
Consider transformingz → (Az + B)/(Cz + D). Its
inverse isz → (Dz−B)/(−Cz+A), as we found above.
Plugging this into the equation for the circle, we have:

∣

∣

∣

Dz−B
−Cz+A

− P
∣

∣

∣

2

= k2

∣

∣

∣

Dz−B
−Cz+A

− Q
∣

∣

∣

2

|Dz − B + PCz − PA|2 = k2|Dz − B + QCz − QA|2

|(CP + D)z − (AP + B)|2 = k2|(CQ + D)z − (AQ + B)|2
∣

∣

∣z − AP+B
CP+D

∣

∣

∣

2

=
∣

∣

∣k CQ+D
CP+D

∣

∣

∣

2 ∣
∣

∣z − AQ+B
CQ+D

∣

∣

∣

2

|z − P ′|2 = k′2|z − Q′|2

But we now recognize this as the equation of another
circle defined by the pointsP ′, Q′ and the ratiok′,
whereP ′ is the Möbius-transformedP , Q′ is the Möbius-
transformedQ, andk′ = k|CQ + D|/|CP + D|. Thus,
we have proved thatMöbius transforms preserve circles
(suitably defined).

We are finally ready for thepièce de ŕesistance—we
show how Möbius transforms factor the Newton square
root iteration into its essential parts.

Consider a circle defined by the two pointsP =
√

N ,
Q = −

√
N and a ratiok. We would like to 1) map this

circle onto a circle centered on the origin; 2)squarethe
resulting quantity; and then 3) apply the mapping inverse
to that in #1. In functional form, this sequence consists
of a mappingz → f(z), following by a squaring, fol-
lowed by the inverse mappingz → f−1(z), or more suc-
cinctly, z → f−1(f(z)2). If we now apply this mapping
twice—i.e., wecomposethe mapping with itself—we get
the mappingf−1(f(f−1(f(z)2))2) = f−1(f(z)4). If
we continue iterating, then then-th iterate will produce
the mappingz → f−1(f(z)2

n

).

Consider now the functionf(z) = (z −
√

N)/(z +√
N). f(z) is a Möbius mapping which maps

0 → −1

∞ → 1

i
√

N → i

−i
√

N → −i
√

N → 0

−
√

N → ∞

In short,f(z) maps
√

N → 0, −
√

N → ∞, and they-
axis onto the unit circle. If we now square the result of
this mapping, the unit circle will map to the unit circle,
while circles smaller than the unit circle will get smaller,
and circles larger than the unit circle will get larger.

But in the “transformed coordinate system” produced
by the mappingf(z), in which the origin stands for

√
N

and∞ stands for−
√

N , we see that the squaring achieves
the effect of mapping circles which were originally close
to

√
N even closer to

√
N , and circles which were origi-

nally close to−
√

N even closer to−
√

N .
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Let us now prove thatf−1(f(z)2) = (z + N/z)/2:

f−1(f(z)2) = f−1





(

z −
√

N

z +
√

N

)2




=
√

N

(

z−
√

N

z+
√

N

)2

+ 1

−
(

z−
√

N

z+
√

N

)2

+ 1

=
√

N
(z −

√
N)2 + (z +

√
N)2

−(z −
√

N)2 + (z +
√

N)2

=
√

N
2z2 + 2N

4
√

Nz

=
z2 + N

2z

=
z + N/z

2

Instead of transforming to the new coordinate system
for each iteration, we can conceptually think of perform-
ing a number of iterations in the transformed coordinate
system before transforming back. In fact, we can perform
sufficient squarings in the transformed coordinate system
so that when we transform back, we will be sufficiently
close to either

√
N or −

√
N . These insights have thus

given us aclosed formsolution for then-th Newton iter-
ation:

z →
√

N
(z +

√
N)2

n

+ (z −
√

N)2
n

(z +
√

N)2n − (z −
√

N)2n

Our explorations have shown us that instead of fo-
cussing upon the sequence ofpoints z0, z1, ..., zn, we
should instead focus upon the sequence ofcircles C0,
C1, ..., Cn on which these points lie, since all of the
points of the circles will be treated essentially alike by
the Newton iterations. In fact, unlessz0 lies exactlyon
they-axis, then these circles will very quickly converge
to zero-radius circles about either

√
N or−

√
N .

Given an initial guessz0, how do we find the appro-
priate circle on which it lies? The answer should now be
obvious: these circles are defined by the two points

√
N ,

−
√

N , and the ratiok = |z −
√

N |/|z +
√

N |, and the
n-th converging circle is defined by the same two points√

N , −
√

N , and the ratiok2
n

.

If we plot a circle of points having the same ratio of
distances to

√
N , −

√
N , respectively, and then plot the

images of those points under the Newton square root it-
eration, we find that a) these image points form a circle;
and b) that the intersectionsI1, I2 of this image circle

with the x-axis have some interesting properties: 1) the
intersection pointI2 further from the origin is thecenter
of the first circle; and 2) the intersection pointI1 lies on
every line which connects a point on the first circle with
its image point under the Newton square root mapping.

In the figure, we have plotted a sequence of circles gen-
erated by successive Newton iterations, and we see that
these circles converge very quickly to

√
N . We have

also plotted a number of points on the initial circle and
drawn lines to their images under a single Newton itera-
tion. These points are 10 degrees apart on the circle in
the coordinate system in which the squarings take place,
and we readily see that they are not equally spaced in the
original coordinate system.
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