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You Could Learn a Lot from a Quadratic:
Newton Squaresthe Circle
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“Newton’s Method” for the iterative approximation of complex numbers; = e’ = cos 6§ + i sin 6, so that
square roots—not just on the real line, but also in the

complex plane—provides one of the most beautiful and Z =€
elegant applications of ‘linear fractional transformagg = cos 260 + isin 20
also known as ‘Mobius transformations. = (cos§ +isind)?
Briefly, Newton’s Method for the square root of the real = (cos? 6 — sin? 0) + (2 cos O sin 0)

numberN consists of guessing an initial approximation ] o )
20, and then successively computing the members of tHdliS equation trivially shows the classic “double an-
sequence; = (zg + N/z)/2, 22 = (z1 + N/z1)/2, ..., gl_e” formulas so laboriously memorized by high school
Zni1 = (zn + N/z,)/2. As we have discussed in previ- igonometry students.
ous columns, this iteration converges rapidly¢/N so Squaring a complex number has the following
long aszq # 0, for positive N, real z. property—if the numbefz| > 1, then|z?| > |z| > 1,
. and additional squarings will grow the absolute value to-

But the real beauty and understanding of Newton§,a.qs infinity—i.e.,|z2"| grows very fast. Similarly, if
method becomes evident by looking at its operation M| < 1, then|2?| < |z| < 1, and additional squarings
the complex plane. In other words, we will considej ghrink the absolute value towards zero—i.p:2" |
the action of the Newton iteration f@omplexnumbers  gprinks very fast. Finally, ifz| is exactlyone, then squar-
Zn = Ty + iyn. \We will see that Newton's square rooting . il not change this, and" will remain on the

method consists of a Modbius transformation of the in'Unit circle for alln > 1. Newton's square root method

tial guess to a new “coordinate system” for the compley,akes essential use of this growing/shrinking property of
plane, followed by a number of simptguaringsof the  gq3ring to converge quickly to the correct value.

transformed initial guess, followed by the inverse Mobius ) i i
transformation back to the original coordinate system. We are particularly interested in sets of complex num-
bers whose absolute values are all the same—these form

We must first review a few properties of complex numeoncentriccirclesabout the origin. The squaring function
bers. A complex number may be expressed in eithermaps one such circle into a second such circle, with the
rectangularform asz = z + iy, or in polar form as mapping “covering” the image circle twice. If we square
z = |z|e?® = |z|(cos 0 +isin @), where|z| is theabsolute again, we map the original circle into a final cirdteur
valueof z, i.e., |z| = |z + iy| = \/m andf isthe times, and if we square the original circletimes, we
arctangenf y/z, i.e.,d = atan(y/z) = atanZy, z). map the original circle into a final circ* times.

If we inverta general complex number—i.e., perform
) IL we Sguarf a qomplgx number, we get = (302 T the operatiorr — 1/z, then in polar form this operation
) o gm ‘y)gj@w) in rectangular form, and-” = becomesz|e? — (1/|z|)e~*. For the case where| =
(|z]e™)” = |2"¢"" in polar form. Thus, when squaring y 'y, _"(y /. ()o~# — =i o thatl /= is identical to

a complex number in polar form, we note that its (realﬁheconjugateé Zr—iyofz—au+iy.

absolute value isquared and its anglé is doubled
The next complex operation we will need is that of
Consider, for example, those complex numbers whodinear fractional transformation’ or ‘Mdbius transfoam
absolute value is exactlgne i.e., numbers: such that tion, for short. A Mobius transformation transforms—
|z| = 1. These numbers form thenit circle in the com- (Az+ B)/(Cz+ D), whereA, B, C, andD are complex
plex plane. In this case, = |z|e?’ = ¢, soz is exactly numbers, and we will need the additional condition that
representable as a pure imaginary exponential. For thed® — BC # 0. These transformations are elegant and
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important because they are one-to-one and onto functionsProving that Mobius transforms preserve circles is
of the complex plane extended with the additional poira bit tricky, since Mobius transforms doot preserve

oo = 1/0. These transformations have inverses—e.gthe centersof the circles. Thus, the center of a circle
the inverse transformation to— (Az + B)/(Cz + D) doesnotusually map into the the center of the Mdbius-

isz— (Dz— B)/(-Cz+ A): transformed circle. As a result, one cannot simply trans-
form the origin to the center of the circle and show that
A(Dz-B)/(-Cz+A)+ B a transformed rotating clock hand sweeps out the trans-
C(Dz—-B)/(-Cz+ A)+ D formed circle.
_ A(Dz—-B)+ B(-Cz+4) There is another characterization of a circle, however,
C(Dz—B)+ D(—Cz+ A) that was known to the ancient Greeks, but not to most
ADz — AB — BCz+ AB modern high school students. This characterization de-
T CD:z:—BC—CDz+ AD scribes a circle as the locus of points the ratio of whose
(AD — BC)z distance to two given fixed points is a constant. Thus, we
~AD_BC start with two arbitrary point$ and(@ in the plane, and

then find those pointg such thatd(Z, P)/d(Z, Q) = k,
wherek is a real (positive) constant anl{Z, P) means

) ] o ) the (Euclidean) distance between the paihtand the
Working with Mbius transforms as ratios works, butysint p. The locus of these pointg will be a circle or a

we can see the properties much more clearly if we Wm@traight line.
these transforms &x 2 matrices:

=z

We will now prove this fact twice—once in traditional
A B Py Az+ B x,y coordinates, and once in complex numbers. Hope-
< C D ) ( 1 ) - < Cz+D > fully, you will agree that the complex number formulation
is much shorter and sweeter.

Once we have this bidirectional mapping between Recall that the equation of a circle in they plane is
Mbbius transformations and matrices, the other propein the form(z—0,)*+ (y—0,)? = r?, where(O,, O,)
ties of Mobius transformations become obvious. Thuss the center of the circle, ands the radius of the circle.
the requirement that D — BC # 0 is simply the require- If we now form the ratio of the distances frofe, y) to

ment that theleterminanof the2 x 2 matrix A B) P = (P, P,) andQ = (Qa,Qy), respectively, we get

C D by brute algebraic force:
be non-zero, so that the matrix has an inverse. Thus, the
inverse of this matrix is V(& =P+ (y—P)? —
1 D —-B \/(SE - QI)Q + (SE - Qy)2
AD — BC (—C A ) Squaring both sides, we get
However, since we intend to form thratio of the two (x—P)*+@y—P)?*
elements of the final column matrix, we can safely ignore (- Q.+ (y—Q,)2 k
any “scale factors—so long as any such scale factor (in _
this casedD — BC) is non-zero. Clearing fractions, we get

One_ofthe truly remarkab_le properties of Mob|u_strans(x —P)’+(y—P)? =Kz — Q.)? + K2 (y — Q,)°.
forms is that theypreserve circles-i.e., givenanycircle
in the complex plane, a Mdbius transform will transformwithout even finishing this derivation, we notice that the
that circle into another circle. For this property to workcoefficients of both:? andy? are the samel(— k?2), so
however, we must define “circles” as including the limthat if the radius squared of the resulting equation is pos-
iting case ofstraight lines which are circles having an itive, we will have a “real” circle.

infinite radius. Let us now consider the same derivation in complex

For example, the transform— (z —1)/(z+1) trans- numbers. We know that the “length” of a complex num-

forms the imaginary (org") axis into the unit circle— berz = z + iy is the distance fromx to the origin, or

i.e.,0 transforms into-1, & transforms intati, andoo  |z] = Va2 +y? = Vz2z = /(z + iy)(z — iy). So the

transforms intal. equation of a circle in complex coordinatesis-O| = r,
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whereO is the center and > 0 is the radius. This equa- But we now recognize this as the equation of another
tion is more usually written as circle defined by the point$’, Q' and the ratiok’,
2= 0P = (= 0)(z - 0) whereP’ is the Mdbius-transformeR, @’ is the Mobius-
, transformed), andk’ = k|CQ + D|/|CP + D|. Thus,
=[(z = 02) +i(y = Oy)] we have proved thailobius transforms preserve circles
[(x — Og) —i(y — Oy)] (suitably defined).
= (z - 01)2 +(y — Oy)2
— 2 We are finally ready for th@iéce de ésistance-we
show how Mdbius transforms factor the Newton square
So the complex formulation of a circle is identical toroot jteration into its essential parts.
the Cartesian formulation. We can now go back to our

ratio formulation for a circle: Consider a circle defined by the two poidfts= /N,

|2 = PJ? — 12 Q = —V/N and a ratiok. We would like to 1) map this
|z — Q] circle onto a circle centered on the origin; sjuarethe
Clearing fractions, we have resulting quantity; and then 3) apply the mapping inverse

to that in #1. In functional form, this sequence consists

2 _ 1.2 2
|z = PI” = k7|2 — Q| of a mappingz: — f(z), following by a squaring, fol-

P—k2Q° |P-k2Q)? |P)®-kYQP? lowed by the inverse mapping— f~!(z), or more suc-
TR | T 1—k2)2 11—k cinctly, = — f~1(f(2)?). If we now apply this mapping
P12 2 k2P — QP2 twice—i.e., wecompose¢he mapping with itself—we get
‘z _PoFQp_KIP-Q) the mapping/ ' (/(f(£(2)2)%) = /' (f(=)"). I
1-k (1—Fk?) we continue iterating, then the-th iterate will produce
(KR = QI\? the mapping: — f~'(f(2)*").
S\ 1—k?
=2 Consider now the functiorf(z) = (z — VN)/(z +

) ) _V/N). f(z) is a Mdbius mapping which maps
Thus, in the general case, we have a circle of positive
radius| P — Q||k|/(1 — k?) centered atP — k*Q)/(1 —
k?). If k = 0, then we have a circle of zero radius cen- 0— —1
tered atP, while if £ = +1, we have a circle of infinite

radius—i.e., a straight line perpendicularly bisecting th o1

line PQ. Note that the sign of is irrelevant, and we can VN — i

therefore take it to be positive. —ivV/N — —i
Now we can use this ratio characterization of circles to VN 50

easily prove that Modbius transforms preserve circles. We

simply plug in the result of the transformation and see —VN = o0

that it is still the ratio of distances, as before.

Consider the circle defined by the two poifts@ and
the ratiok. Then|z — P|> = k2|2 — Q|? is a circle. In short, f(z) mapsy'N — 0, —v/N — oo, and they-
Consider transforming — (Az + B)/(Cz + D). Its axis onto the unit circle. If we now square the result of
inverseis: — (Dz—B)/(—Cz+A), as we found above. this mapping, the unit circle will map to the unit circle,

Plugging this into the equation for the circle, we have: While circles smaller than the unit circle will get smaller,
and circles larger than the unit circle will get larger.

2 2
Dz—B _ 1.2| Dz—B
’7024*14 _P‘ =k ‘*CerA _Q‘

But in the “transformed coordinate system” produced
) ) , by the mappingf(z), in which the origin stands fov’ N
[(CP + D)z — (AP + B)|” = k*|(CQ + D)z — (AQ + B)|” andoo stands for-v/N, we see that the squaring achieves
AP4B ‘2 _ ’kCQ+D ‘2 ‘Z _ AQiB ’2 the effect of mapping circles which were originally close
CP+D CP+D CQ+D to v/ N even closer ta/N, and circles which were origi-
2= P2 =K%z — Q) nally close to—v/N even closer to-v/N.

|Dz — B+ PCz — PA|” = k*|Dz — B+ QCz — QA

z —
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Let us now prove thaf ~(f(2)?) = (z + N/z)/2: with the z-axis have some interesting properties: 1) the
intersection poinf; further from the origin is theenter
) ) ) 72— N 2 of the first circle; and 2) the intersection poihtlies on
=@ =7 every line which connects a point on the first circle with
z+ \/N . . .
its image point under the Newton square root mapping.
2
(Z,\/N) + 1
z4+VN
VN
o (z+\/ﬁ) +1

v (2= VNP + (2 + VN)?
—(z=VN)2+ (z+VN)?

222 4+ 2N
= \/Ni
4V Nz

Instead of transforming to the new coordinate system
for each iteration, we can conceptually think of perform-
ing a number of iterations in the transformed coordinat
system before transforming back. In fact, we can perform
sufficient squarings in the transformed coordinate system
so that when we transform back, we will be sufficiently
close to eithen/N or —/N. These insights have thus
given us aclosed formsolution for then-th Newton iter-

ation: In the figure, we have plotted a sequence of circles gen-
N)2" _ VN erated py successive Newton |t¢rat|ons, and we see that
2 — \/N(Z + \/—)Qn + (2 \/_)zn these circles converge very quickly tdN. We have
(+VN)*" — (2 = VN) also plotted a number of points on the initial circle and

drawn lines to their images under a single Newton itera-

qu explorations have shovv_n us that instead of 3, Thege points are 10 degrees apart on the circle in
cussing upon the sequence pdints zg, z1, ..., 2, We

. ; the coordinate system in which the squarings take place,
should instead focus upon the sequenceigfles Cy, y : g g

and we readily see that they are not equally spaced in the
C1, ..., C, on which these points lie, since all of the W 'y y quatly sp !

k . . . : original coordinate system.
points of the circles will be treated essentially alike by g y

the Newton iterations. In fact, unless lies exactlyon
the y-axis, then these circles will very quickly convergeR efer ences
to zero-radius circles about eithetV or —v/N.

Given an initial guessy, how do we find the appro- [Beeler72] Beeler, M, Gosper, R.W., and
priate circle on which it lies? The answer should now be  Schroeppel, R. HAKMEM. MIT Al Memo
obvious: these circles are defined by the two points, No. 239, Feb. 29, 1972, items #3, #126.

—+/N, and the ratide = |z — v/N|/|z + v/ N|, and the
n-th converging circle is defined by the same two points

VN, =N, and the ratid:2". [Cayley?p] Cayley, A. ‘Applicgtion of the Newton-
Fourier Method to an Imaginary Root of an Equa-

tion.” Quart. J. Pure & Appl. Math.xvi (1879), 179-

185 «http://home.pipeline.com/"hbakerl/quaternion/cayley /Newton.ps.gz

http://home.pipeline.com/"hbakerl/hakmem/hakmem.htm |

If we plot a circle of points having the same ratio of
distances to/N, —v/N, respectively, and then plot the
images of those points under the Newton square root it-
eration, we find that a) these image points form a circl¢Corless98] Corless, Robert M. “Variations on a Theme
and b) that the intersections, I, of this image circle of Newton.”Math. Mag, 71, 1 (Feb. 1998), 34-41.
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