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Algorithms for extracting the roots of polynomials of the
2nd, 3rd and 4th degree are usually presented as cook-
book recipes, with no insight about how such a recipe
works or how it might have been discovered. This note
shows how a clever high school student could use trans-
formations (translation, scaling, rotation, inversion) of
the complex plane to discover root-extraction methods for
these polynomials.1 In some instances, the transforma-
tions computed may be more valuable than the extracted
roots. We are un-Abel to extend these methods to poly-
nomials of higher degree.

This note also motivates the need for algebraic poly-
nomial root-extraction by visualizing the chaos pro-
duced by a numerical Newton method. Code is in-
cluded in the PostScript of this paper found in the direc-
tory http://home.pipeline.com/˜hbaker1/
sigplannotices/ .

1Garver [Garver29a] [Garver29b] independently made the same
suggestion, as did Klein in 1888 [Klein56].

Digital Dentistry, or, Poly Wants a Cracker

Algorithms for polynomial root extraction have been
known for about 500 years, but have on occasion been
jealously guarded secrets.2

From the convoluted way these algorithms are pre-
sented today, one might conclude that they are still
state secrets. The mathematics curriculum often seems
to be geared primarily to the weeding out of non-
mathematicians, rather than to providing mathematical
insight for the rest of us. In this note, we attempt to pro-
vide some fun and insight along with some knowledge.

Excuse Newton’s Dust, or, This Paper is
Truly a ‘Dusty Deck’

Many numerical analysis texts recommend the use of
Newton’s method to find the roots of a polynomial.
Briefly, this method operates as follows. Given a poly-
nomial p(z), we make an initial guessz0 at a root for
the polynomial, and then compute a (hopefully improved)
guessz1 using the formulaz1 = z0−p(z0)/p′(z0), where
p′(z) is the derivative ofp(z). This new guessz1 is then
used to compute an even better guessz2 using the same
formula, and so on. Ifz0 is ‘close enough’ to an actual
(non-repeated) rootr, then Newton’s method converges
quadratically to the root, doubling the precision of the
approximation with every iteration.

Newton’s method for the square root ofN is quite ele-
gant:zi+1 = (zi + N/zi)/2—i.e., the improved guess is
the arithmetic average (mean) of the current guess andN
times the inverse of the current guess.3

2Tartaglia, an early solver of the cubic, met Ferrari, an early solver
of the quartic, in a public math contest (and you thought TVchesswas
boring!) in Milan on August 10, 1548. Ferrari won and became asuper-
visor of tax assessments, a very lucrative job. Cardan, Ferrari’s mentor,
who “lived in great poverty until he became a lecturer in mathematics”
(!), published solutions for both the cubic and the quartic in his Ars
Magna(1545). [EB94]

3On the other hand, if we used thegeometricaverage, thenzi+1 =

√

ziN/zi =

√

N , and we would need only one step.
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Figure 1: Images of circles|z + 1| = 2/3 and|z − 1| =
2/3 under Newton square root mappingz ⇒ (z+1/z)/2.

We can investigate the convergence properties of New-
ton’s square root method in the complex plane by fo-
cussing on the caseN = 1 — i.e.,zi+1 = (zi + 1/zi)/2.
This method is quite robust so long asz is not on the
imaginary axis. Once the method starts on the left or right
hand side of the imaginary axis, it stays there and con-
verges to−1 or 1, respectively. However, if the method
starts on the imaginary axis, it stays there forever, but
jumps around quite a bit [Beeler72,#3(Schroeppel)]. We
also notice that every pointw = (z + 1/z)/2 hastwo
preimage points:z and1/z (becausez + 1/z = 1/z +
1/1/z). Although computing the largest circle which
guarantees convergence to 1 is problematic because both
the center and the radius are unknown, it is easy to com-
pute the largest circle centered on a root for which this
method never escapes. We will call the radius of this cir-
cle the “Schwartzchild radius” for Newton’s square root
method, by analogy with the radius of a “black hole” in
Einstein’s general relativity. The “Schwartzchild” radius
for the square root method is found by first noticing that
if 0 < x < 1, then(x+1/x)/2 > 1, and then solving the
quadratic equation((1−r)+1/(1−r))/2 = 1+r, where
0 < r < 1. This quadratic simplifies to3r2 − 2r = 0 and
has only 1 non-zero root —r = 2/3. Figure 1 is a plot of
the ‘black hole’ surrounding each square root.

Newton’s method for the cube root of 1 is similar
to that for the square root of 1:zi+1 = (2/3)zi +
(1/3)(1/z2

i ) — i.e., the weighted average of the current
guess and the inverse square of the current guess.4 New-
ton’s cube root method is less robust than that for the
square root. “Most” initial guesses still converge to a root,

4Note the lack of symmetry in this formula, compared with thatfor
the square root—e.g., the ‘weights’ 2/3, 1/3 seem contrived. Cayley
apparently agreed: “The solution is easy and elegant in the case of a
quadratic equation, but the next succeeding case of the cubic equation
appears to present considerable difficulty” [Cayley1879c].

Figure 2: Images of circles around roots of radius
0.44174 under Newton cube root mappingz ⇒ (2z +
1/z2)/3.

but the locations of the exceptions are no longer confined
to one or more lines, but occupy regions which cover
a substantial fraction of the complex plane. Since this
method gives each pointw = (2/3)z+(1/3)(1/z2) three
preimage points (which can be found by solving a cu-
bic equation), we can find the preimages of 0, the preim-
ages of the preimages of 0, and so on. Thus, each excep-
tional point gives rise to three more, and thus in then-th
preimage generation, we have3n points—i.e., we have
3n points which will be mapped to 0 in exactlyn itera-
tions of Newton’s cube root method, and about3n+1/2
points which map to 0 inn or fewer iterations. In Figure
3, we show a simple recursive PostScript program which
exploresn levels of this ternary tree and plots each one of
these exceptional points to show the fractal nature of this
set of exceptional points.

One might presume that with this fractal behavior,
there are no ‘nice’ regions. This presumption is incor-
rect, as we can still compute a “Schwartzchild radius” for
Newton’s cube root method, by solving the cubic equa-
tion (2/3)(1 − r) + (1/3)(1 − r)−2 = 1 + r. This
cubic simplifies to5r3 − 9r2 + 3r = 0, whose 2 non-
zero roots are(9 ±

√
21)/10, the smaller of which is

(9−
√

21)/10 ≈ 0.44174. Once within a circle of this ra-
dius around a cube root of 1, Newton’s method will never
leave this circle again. Figure 2 is a plot of the ‘black
hole’ surrounding each cube root. In Figure 3, we again
plot these circles along with the myriad of exceptional
points which hint at chaos.5

5Our plot of the preimages of 0 is essentially the same as Figure 43
of [Peitgen86], except that we also plot the Schwartzchild radius.
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Figure 3: Preimages of 0 under the Newton cube root
mappingz ⇒ (2z + 1/z2)/3.

The existence of chaotic regions about these excep-
tional points shows how important it is tostart Newton’s
method with a good initial guess. If we start within one
of the ‘black holes’, then we are guaranteed to converge,
and more importantly, we will converge monotonically
(in terms of distance) to the closest root. We are therefore
willing to perform some computations to ensure a good
starting point for Newton’s method. Unfortunately, it ap-
pears that for polynomials of degree 4 or less, computing
a good initial point is as difficult as algebraically comput-
ing one of the roots. (Schur-fire techniques which test for
the presence of zeros in a circular region are known, but
they are outside the scope of this paper.)

Properties of Polynomials

The n-degree polynomialp(z) = anzn + an−1z
n−1 +

... + a1z + a0 has exactlyn complexrootsri, such that
p(ri) = 0. In particular,p(z) can be factored into a prod-
uct of linear factorsz − ri, together with the high-order
coefficientan.

p(z) = an

∏

i

(z − ri)

Two facts are immediately evident from this represen-
tation: thesumof the roots can be calculated froman−1,

and theproductof the roots can be calculated froma0:

∑

i

ri = −an−1/an

∏

i

ri = a0/an

Thecenter of massof the roots is−an−1/na0 — the
root sum divided byn. Thus, we can easily compute
p(z − an−1/nao), which isp(z) translated to a coordi-
nate system in which the center of mass is now the origin,
and the coefficient ofzn−1 in p(z − an−1/na0) is thus
zero.

If p(z) is divided synthetically byz − c, we get a quo-
tient q(z) and a remainder of degree smaller than 1 —
i.e., a constant. Thus,p(z) = q(z)(z − c) + d. But
p(c) = q(c)(c − c) + d = d. Thus, the remainder ofp(z)
divided byz − c is p(c).

If one of the rootsri is zero, then the corresponding
linear factorz − ri = z − 0 = z, in which case the
polynomial is a multiple ofz and its constant coefficient
is zero. Thus, a zero root is obvious from the constant
coefficient of zero.

If ri = rj , for somei 6= j, then we have arepeated
root, where themultiplicity of the root is the number of
occurrences of the root in the factored polynomial. Using
calculus, if we compute the derivativep′(z) of the poly-
nomial p(z), then the multiplicity of a repeated root in
the derivative polynomial is one less than its multiplic-
ity in the original polynomialp(z). In other words, if
p(z) = q(z)(z − r)m, thenp′(z) = q′(z)(z − r)m +
q(z)m(z− r)m−1 = (z− r)m−1(q′(z)(z− r)+mq(z)),
assuming thatr is not a root ofq(z).

Using this fact, we can easily find all repeated roots by
computing the greatest common divisor of a polynomial
p(z) and its derivativep′(z) using polynomial “synthetic
division”.

an(z − r)m−1

= gcd(p(z), p′(z))

= gcd(q(z)(z − r)m, (z − r)m−1(q′(z)(z − r) + mq(z)))

= (z − 1)m−1 gcd(q(z)(z − r), q′(z)(z − r) + mq(z))

Abel was I ere I saw Elba

Somewhat less well known is the fact that ifri is a root
of the polynomialp(z), then1/ri is a root of thereversed
polynomialr(z) in which the coefficients are listedback-
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wards.6

r(z) = a0z
n + a1z

n−1 + ... + an−1z + an

= znp(1/z)

We find this fact useful when the reversed polynomial has
more desirable properties than the original polynomial.

An interesting case is that of apolynomial palin-
drome — a polynomial which is the same, both for-
wards and backwards (also called areciprocal polyno-
mial [Lovitt39] [Eves66]).7

The degree of palindromic polynomials can be re-
duced, using the fact thatthe inverse1/r of every root
r is also a root. If a palindromic polynomial is ofodd
degree, then−1 must be a root because it must be its
own reciprocal, and the linear factorz +1 can then be di-
vided out using synthetic polynomial division. We there-
fore consider a palindromic polynomial ofevendegree.
By dividing the2n-degree palindromic polynomialp(z)
by zn and pairingzi with z−i, we get

p(z)/zn = 2a0(z
n+1/zn)+2a1(zn−1+1/zn−1)+...+an

Consider the functions defined recursively byV0(z) =
2, V1(z)+z+1/z, Vp(z) = (z+1/z)Vp−1(z)−Vp−2(z).
By induction,

Vp(z) = (z + 1/z)Vp−1(z) − Vp−2(z)

= zp + 1/zp

So we can now representp(z)/zn = 2a0Vn(z) +
2a1Vn − 1(z)+ ... + a0. ButVp(z) is a degree-p polyno-
mial in z′ = z + 1/z, sop(z)/zn = q(z + 1/z), where
q(z) is onlyhalf the degree ofp(z).

Möbius Transforms

The Möbius transform is one of the most fascinating
transforms of the complex plane. Given 4 complex num-
bersA, B, C, D, the Möbius transform with these confor-
mal (!) parameters maps the complex numberz into the
number(Az +B)/(Cz +D). So long asAD−BC 6= 0,
this mapping is invertible. The Möbius transform is the
algebraic closure of the transforms generated by transla-
tion (z ⇒ z + B), dilation (z ⇒ az), rotation (z ⇒ eiθ),
and inversion (z ⇒ 1/z).

6The characteristic polynomial of the matrixA−1 is a scalar multi-
ple of the reverse of that of A.

7The characteristic polynomial of anorthogonalmatrixA (AAT
=

I) is a reciprocal polynomial.

You may have already seen a Möbius transform before
without realizing it. For example, the complexarctan-
gentfunction is a rotated and scaled version of a Möbius-
transformed complexlogarithmfunction:

arctan(z) =
i

2
log

(

1 − iz

1 + iz

)

Möbius transforms are best understood as linear trans-
formations on complex numbers expressed in homoge-
neous coordinates—i.e., pairs(x, y) of complex numbers
representing the ratioz = x/y. Then the Möbius trans-
form (Az + B)/(Cz + D) can be represented in2 × 2
matrix form as:

(

A B
C D

)(

z
1

)

=

(

Az + B
Cz + D

)

This form is more than suggestive—the composition
of two Möbius transforms is represented by matrix mul-
tiplication of the associated matrices. Furthermore, the
inverse of a given Möbius transform is represented by the
inverse of the matrix of the given transform. However,
due to the homogeneous nature of the representation, any
scalar multiple of a Möbius transform matrix represents
the same transform. We can use this property to “clear
fractions” from the representation of the inverse trans-
form of (Az + B)/(Cz + D):

(

A B
C D

)(

D −B
−C A

)

=

(

D −B
−C A

)(

A B
C D

)

=

(

AD − BC 0
0 AD − BC

)

Some simple properties of Möbius transforms are: 1)
in the identity transform,A = D 6= 0 andB = C = 0;
2) in a translation,A = D 6= 0, C = 0; 3) in a scal-
ing and/or rotation,A 6= 0, D 6= 0, B = C = 0; 4) in
a scaling/rotation plus a translation (asimilarity transfor-
mation),A 6= 0, D 6= 0, C = 0; and 5) in an inversion,
B = C 6= 0, A = D = 0. The transform in which
A 6= 0, C 6= 0, D 6= 0, B = 0 corresponds to an inver-
sion, followed by a similarity transformation, followed by
another inversion.

The 3 distinct images of 3 distinct points determine a
unique Möbius transform. A simple way to construct this
transform is the following. The Möbius transform map-
pinga ⇒ 0, b ⇒ ∞, c ⇒ 1 can easily be seen to be

z ⇒
(

c − b

c − a

)(

z − a

z − b

)

,

27



SIGPLAN
ACM

Garbage In/Garbage Out

which has the associated matrix
(

c − b 0
0 c − a

)(

1 −a
a −b

)

The Möbius transform mappinga ⇒ a′, b ⇒ b′,
c ⇒ c′ can then be constructed as the composition of
the mappingsa ⇒ 0 ⇒ a′, b ⇒ ∞ ⇒ b′, c ⇒ 1 ⇒ c′,
which can be computed by multiplying the matrix of the
type above associated with the first mapping by the ma-
trix (which is the inverse of a matrix of the type above)
associated with the second mapping. For example, we
can construct a Möbius mapping which permutes the 3
cube roots of 1 by exchanging 1 and(−1 +

√
3)/2, but

leaving(−1 −
√

3)/2 fixed: z ⇒ (−1 +
√

3)/2z.

Three distinct points in the plane determine a circle or
a line (a line is a “circle through infinity”). Given any
other 3 distinct points, one may construct a Möbius trans-
form. This Möbius transform maps not only the 3 given
points to their images, but it also mapseverypoint on
the circle determined by the first 3 points into points on
the circle determined by the second 3 points. We thus
have the phrase “Möbius transforms map circles into cir-
cles”. This property means that the class of graphical ob-
jects constructed solely ofpoints, linesandcircular arcs
is closed under Möbius transforms, because any such ob-
ject is transformed into another object of the same class.8

We will need some derivatives of the Möbius trans-
form.

m(z) =
Az + B

Cz + D

m′(z) =
AD − BC

(Cz + D)2
=

∆

(Cz + D)2
,

where

∆ =

∣

∣

∣

∣

A B
C D

∣

∣

∣

∣

m′′(z) =
−2C∆

(Cz + D)3

m′′′(z) =
6C2∆

(Cz + D)4

Stereographic Projection

Closely related to the Möbius transformation of the com-
plex plane is thestereographic projectionwhich maps the
surface of a sphere onto the complex plane in an invert-
ible manner. Briefly, a stereographic projection can be

8Simple “polylines” in theAutoCAD(r)drawing system from Au-
todesk, Inc., consist of lines and circular arcs.

achieved by placing a sphere—e.g., a globe—on top of
the complex plane in such a way that the south pole of
the sphere sits on the origin of the complex plane. The
projection is then obtained by considering a ray cast from
the north pole of the globe through any other point on the
globe and then onto the plane. The point (other than the
north pole) intersected by the ray on the sphere is then
mapped via the projection onto the point intersected by
the ray on the plane. Furthermore, this mapping is in-
vertible if we associate the north pole of the sphere with
∞.

It is not essential that the sphere sit on top of the plane,
and it is more convenient if the plane cuts the sphere at
its equator. Thus, if the sphere has radius 1, then we can
compute the pointa + bi that the point(x, y, z) on the
sphere maps into and vice versa.

(x, y, z) ⇒ x + yi

1 + z

and

a + bi ⇒
(

2a

1 + a2 + b2
,

2b

1 + a2 + b2
,
1 − a2 − b2

1 + a2 + b2

)

The stereographic projection is particularly elegant be-
cause it makes more explicit the symmetry of the map-
ping a + bi ⇒ 1/(a + bi) as well as the symmetry of
the other Möbius mappings. For example, the mapping
a + bi ⇒ −a − bi induces the mapping(x, y, z) ⇒
(−x,−y, z) on the globe, which is simply a rotation by
180◦ about the N-S pole. Similarly, the mappinga+bi ⇒
1/(a + bi) induces the mapping(x, y, z) ⇒ (x,−y,−z)
on the globe, which is simply a rotation by180◦ about
the pole through the equator at0◦ − 180◦ (the “a” axis).
The mappinga + bi ⇒ −1/(a + bi) induces the compo-
sition of the previous two rotations to induce the mapping
(x, y, z) ⇒ (−x, y,−z) on the globe, which is a rotation
by 180◦ about the pole through the equator at90◦− 270◦

(the “b” axis).

The most elegant part of the stereographic projection
is the fact that circles on the globe are mapped into cir-
cles and lines on the complex plane, and conversely, lines
and circles on the complex plane are mapped into circles
on the globe. Thus, every Möbius transformation of the
complex plane induces a transformation of the globe in
such a way that circles on the globe are transformed into
other circles on the globe.

Not all Möbius transformations induce merely rota-
tions of the globe. For example, Möbius transforms can
induce mappings of great circles (such as the equator)

28



SIGPLAN
ACM

Garbage In/Garbage Out

into smaller circles (such as a latitude), as well as induc-
ing mappings of 3 equidistant points on the globe into 3
non-equidistant points. However, those Möbius transfor-
mations whichdo induce rotations can be expressed with
just two complex parameters:(Az + B)/(−B∗z + A∗),
whereA∗, B∗ are the conjugates ofA, B, respectively.
It is not mere coincidence, then, that we find that this
Möbius subgroup is isomorphic to the (unit)quaternions,
which provide an elegant way to express arbitrary rigid
rotations in three dimensions.

The stereographic projection can be used to map the
roots of a polynomial onto a globe in such a way that
the symmetry between a polynomial and its reverse poly-
nomial is evident. Since reversing a polynomial trans-
forms each rootr to its inverse1/r, and since the map-
ping z ⇒ 1/z is simply a180◦ rotation of the globe, the
original roots plotted on the globe will simply follow the
globe during its180◦ rotation, while the arrangement of
the roots is otherwise unchanged. The stereographic pro-
jection also makes the complexFourier Transformmore
elegant—the Fourier Transform of a polynomial is the
evaluation of the polynomial at evenly spaced intervals
around the equator of the stereographic globe.

Visualization Using PostScript(tm)

Although thePostScriptlanguage [Adobe90] was devel-
oped primarily as apage description languagefor use in
modern computer printers, this Forth-like language is sur-
prisingly powerful. We will use PostScript as both an “ap-
plication” language for symbolic and numeric computing,
in addition to using it as a graphical language for visual-
izing the results of these computations. In so doing, we
will be doing the ultimate in “lazy evaluation”, since the
entire computation will be performed inside the printer in
a “procrastinating PostScript”!

PostScript is a stack-oriented language—all arguments
to a function are provided on the stack, and all results
from the function are returned on the stack. Thus, the
PostScriptadd function takes the two numbers from the
top of the stack and replaces them with a single number—
the sum of these two arguments. PostScript also provides
literal numbers and interactive execution (even on your
laser printer!9), so typing the following will compute 2+3:

>2 3 add ==
9Hook up a serial line from your computer to the PostScript printer;

start up your terminal emulation program in 7-bit ASCII mode; and
type executive<cr> . Although the characters ‘executive ’ will
not be echoed, your efforts should be rewarded with a ‘>’ PostScript
interactive prompt character [Adobe90,s2.4.4].

5

(The == command/function prints the top element of
the stack and pops it off;pstack prints the whole stack
without popping it; clear clears the stack.) Other
PostScript arithmetic operators includeneg , sub , abs ,
mul , div , mod, sin , cos , exp , ln , sqrt , etc.

We will not be long content with the built-in PostScript
operators, so we will want to construct our own. Two
operations that are often required in PostScript areadd1
andsub1 , which increment and decrement the number
at the top of the stack, respectively.

>/add1 {1 add} def
>/sub1 {1 sub} def
>3 add1 ==
4
>3 sub1 ==
2

(The “/ ” quotes the name “add1 ” so that this symbol is
treated literally, rather than having the interpreter try to
execute it.)

Now suppose that we want to define a general
“add-n ” function. Rather than having to define each of
the functionsadd2 , add3 , etc., separately, we can de-
fine a generic function-producing functionadd-n which
takes an argument specifying the increment, and then re-
turns the appropriatefunctionon the stack.

>/add-n {{add} 1 make-closure} def
>/add2 2 add-n def
>/add3 3 add-n def
>3 add2 ==
5

Before looking at the non-primitive operator
make-closure , let us first look at the code that
add-n constructs.

>2 add-n ==
{2 add}

So add-n is working correctly. But what does
make-closure do?

>/make-closure
{exch aload length dup 2 add

-1 roll add array astore cvx}
def
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Without going into detail,make-closure simply cre-
ates a new operator by appending some number of literals
from the top of the stack, thus incorporating these param-
eters directly into the code.

We will require some number of operations on vec-
tors of elements, constructed in PostScript using square
brackets ‘[] ’, for which PostScript provides a little na-
tive support. Let us first make a vector of lengthn of in-
tegers from0 up ton, which operation is known asiota
from the APL language [Brown88]:

>/iota
{0 1 3 -1 roll {} for array astore}
def

>5 iota ==
[0 1 2 3 4]

We would like tomapa function over a vector to produce
a vector of results;map1 maps a function of 1 argument:

>/map1 {[ 3 1 roll forall ]} def
>[3 1 4 1 5] {add1} map1 ==
[4 2 5 2 6]

We would also like to map a function of 2 arguments over
2 vectors to produce a vector of results. Such a function
can sum 2 vectors together element-by-element, and we
call it map2:

>/map2
{exch dup dup length array copy

dup length 1 sub 0 1 3 -1 roll
{4 index 1 index get 3 index

2 index get 5 index exec
2 index 3 1 roll put} for

4 1 roll pop pop pop}
def

>[3 1 4 1 5 1] [2 7 1 8 2 8]
{add} map2 ==

[5 8 5 9 7 9]

Using these functions, we can now programcomplex
numbersinto PostScript, using the representation[3 4]
for 3 + 4i. In this paper,10 we give definitions ofcom-
plex number functions, where a “c ” is prepended to
the name of each PostScriptreal function—e.g.,cadd ,
conjugate , norm , cscale , cdiv :

10“In this paper” is meant quite literally—if you have the PostScript
code for this paper, you have the program code!

>/cadd {{add} map2} def
>/conjugate

{[ exch aload pop neg ]}
def

>/cnorm
{dup conjugate cmul aload pop pop}
def

>/cscale
{{mul} 1 make-closure map1}
def

>/cdiv
{conjugate dup cnorm 1 exch div

cscale cmul}
def

We are now in a position to program polynomials with
complex coefficients. We represent the polynomialp(z)

p(z) = anzn + an−1z
n−1 + ... + a1z + a0

having complex coefficientsai by the “little-endian” (re-
versed) PostScript vector

[a0a1...an−1an]

For example, the polynomialx2 − ix + 3 is represented
by the vector[[3 0] [0 -1] [1 0]] .

We will require several operations on polynomials, in-
cluding polynomial evaluation at a particular point, poly-
nomial differentiation, etc. For example, a functionn(z)
to compute an improved Newton approximation to a root
r is given byn(r) = r − p(r)/p′(r), wherep(z) is a
polynomial andp′(z) is its derivative, can be computed
by pc-newton :

>/pc-newton % make a procedure
% to do a newton
% iteration on
% a polynomial p.

{dup pdiff exch
{2 index peval exch

2 index peval cdiv csub}
2 make-closure}

def
>[2 2] [[-1 0] [0 0] [1 0]]

pc-newton exec ==
[1.125 0.875]

Solving a linear polynomial

We solve a polynomial in an excruciatingly pedantic way,
in order to give insight about how to deal with higher-
order polynomials. The solution of the linear polynomial
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a1z + a0 = 0 proceeds in two steps. First, we make
the polynomialmonic11 by dividing bya1 to getp(z) =
z + a0/a1 = 0. We know that a polynomial of degree
1 has exactly one root, and this root can be transformed
by a simpletranslationinto a canonic location—e.g., the
origin.

Consider the substitutionz = y + B. Thenp(z) =
p(y+B) = (y+B)+a0/a1 = y+(B +a0/a1) = q(y).
The polynomialq(y) will be in the canonic formy− 0 iff
B +a0/a1 = 0. Solving forB, we getB = −a0/a1. We
can now calculate the root by substitutingy = 0 into the
equationz = y + B = 0 + B = −a0/a1.

Solving a quadratic polynomial

The traditional high-school derivation of the solution
of the general quadratic equation involves “completing
the square”. I never understood the motivation for this
“stupid root trick” when I was in high school, and I still
don’t understand it today. My best motivation comes
from an understanding that a quadratic equation has ex-
actly 2 roots, and so long as the roots are distinct, there
exists a simplesimilarity transformation(scaling/rotation
plus translation) that will map these 2 roots onto the
two points±1 — i.e., we want to transform any given
quadratic equation having distinct roots into the canonic
form z2 − 1 = 0, whose solution we know because we
constructed this equation asz2−1 = (z−1)(z +1). The
inverse of the similarity transformation applied to±1 will
then yield the roots of the original equation.

First, make the quadratic polynomial monic by divid-
ing by its high order coefficient. We then havep(z) =
z2 + a1z + a0. Consider the substitutionz = Ay + B.
UsingTaylor series, extract the coefficients of the substi-
tuted polynomial:

p(z) = p(Ay + B)

= y2A2p′′(B)/2 + yAp′(B) + p(B)

= A2y2 + A(2B + a1)y + B2 + a1B + a0

= A2q(y),

q(y) is a monic quadratic.

If we equate the coefficients of this equation to that of
the canonic equationy2 − 1, then we have 2 equations in
the two unknownsA, B:

Ap′(B)/(A2p′′(B)/2) = p′(B)/A = 0,

11Since a monic polynomial has one less degree of freedom, making
a polynomial monic is “monic depression”.

or more simply,p′(B) = 2B + a1 = 0.

p(B)/(A2p′′(B)/2) = p(B)/A2 = −1,

or more simply,A2 = −p(B).

The first equation is trivially solved forB =
−a1/2, whereupon the second equation becomesA2 =
−p(−a1/2). This equation can be solved by extracting
roots: A = ±

√

−p(−a1/2). We can now recover the
roots of the original equation by substituting±1 into the
equationz = Ay + B:

r1 = A(1) + B

=
√

−p(B) + B

=
√

−p(−a1/2) − a1/2

= −a1/2 +
√

(−a1/2)2 − a0

r2 = A(−1) + B

= −
√

−p(B) + B

= −
√

−p(−a1/2)− a1/2

= −a1/2 −
√

(−a1/2)2 − a0

We now recognize the traditional quadratic equation
formulae. We first note thatbothsolutions forA work—
one maps the rootsr1, r2 onto 1,-1, respectively, while the
other maps the rootsr1, r2 onto -1,1, respectively. We
also note that although we assumed that the roots were
distinct, the final formulae work even when the roots are
the same! In this case, the rotation/scaling factorA = 0,
so that the two roots±1 map into the one root ofp(z).

Solving a cubic polynomial

If we translate a cubic polynomial to the center of mass of
its roots, we produce a cubic polynomial whose quadratic
coefficient is zero. If after this translation the linear
coefficient—which can be Taylored asp′(−a2/3a3) —
is also zero, then we have a trivial cubic equation of
the formb3(z + a2/3a3)

3 + b0 = a3(z + a2/3a3)
3 +

p(−a2/3a3) = 0, which is easily solved by extracting the
3 cube roots of−b0/b3 = −p(−a2/3a3)/a3. Thus, this
trivial case can be solved with a simplesimilarity trans-
formation

z = Ay + B

= y
√

−b0/b3 + B

= y
√

−p(B)/a3 + B

= y
√

−p(−a2/3a3)/a3 − a2/a3
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We can recover the 3 roots ofp(z) by substituting1,
(−1+

√
3)/2, and(−1−

√
3)/2 for y in the above equa-

tion.

This trivial case having been disposed of, we can now
focus on the hard case of the cubic—where the linear co-
efficient is not zero after transforming to the center of
mass coordinate system. We know from our study of
Möbius transformations that they can transform lines and
circles into lines and circles. In particular, they can trans-
form any circle (or line) defined by 3 points into any
other circle (or line) defined by the transform of each
of these 3 points. Therefore, we suspect that a Möbius
transform could be used to transform a cubic equation
p(z) = z3+bz+2+cz+d = 0 having distinct roots into
the canonic equationz3−1 = 0 in such a way that the dis-
tinct roots ofp(z) are mapped onto the 3 cube roots of one
— 1, (−1+

√
3)/2, (−1−

√
3)/2. A possible problem is

that the Möbius parameters might not be easily calculated
from the coefficients of the given cubic equation.

We now consider the Möbius transformationz =
(Ay + B)/(Cy + D). If this transformation is non-
singular, then we cannot haveC = D = 0. Since the
trivial similarity case has already been disposed of, we
must haveC 6= 0. For if C = 0, then the simple simi-
larity transformation(A/D)y+(B/D) could solvep(z),
but we already know that it can’t. Therefore,C 6= 0. Less
obviously, we must also haveD 6= 0. Consider the case
D = 0. Then

p((Ay + B)/(Cy + D))(Cy + D)3

= p((Ay + B)/Cy)(Cy)3

= B3p((A/C) + 1/(Cy/B))(Cy/B)3

= B3p((A/C) + 1/x)x3

But this is a polynomial translated byA/C, and then
reversed. If the two middle coefficients are both zero,
then reversing the polynomial will not change that, so
the translation byA/C alone must have made them both
zero. But this is the same trivial case that we have already
disposed of above.

If z = (Ay + B)/(Cy + D) in the equationp(z), we
haveEq(y) = p(z)(Cy + D)3 = p((Ay + B)/(Cy +
D))(Cy + D)3, whereq(y) is a monic polynomial, and
whereE is a function ofA, B, C, D, and the coeffi-
cients ofp(z); E must now be determined. The coeffi-
cient ofy3 in the polynomialEq(y)—i.e.,E itself—can
be found via Taylor series asEq′′′(0)/3!, but the algebra
becomes quite involved. We therefore consider Taylor se-
ries applied to the reverse/backwards polynomialEr(y)

associated withEq(y):

Er(y) = Ey3q(1/y)

= y3p((A/y + B)/(C/y + D))(C/y + D)3

= p((A + By)/(C + Dy))(C + Dy)3.

Therefore,E = Er(0) = p(A/C)C3. The coefficient
of y2 in q(y) can also be computed by Tayloringr(y). By
setting the 3 low order coefficients ofq(y) to be the same
asy3 − 1, we get 3 equations:

q′′(0)/2! = r′(0)

= (D/C)
3p(A/C) + (B/D − A/C)p′(A/C)

p(A/C)
,

or simply3p(A/C) − (A/C − B/D)p′(A/C) = 0.

q′(0) = (D/C)2
3p(B/D) + (A/C − B/D)p′(B/D)

p(A/C)
,

or simply3p(B/D) + (A/C − B/D)p′(B/D) = 0.

q(0) = (D/C)3
p(B/D)

p(A/C)
= −1,

or more simply,

(D/C)3 = − p(A/C)

p(B/D)
.

Since A/C and B/D figure so prominently in our
equations, we substituter = A/C ands = B/D:

3p(r) − (r − s)p′(r) = 0

3p(s) + (r − s)p′(s) = 0

(D/C)3 = −p(r)

p(s)

It should be obvious that subtracting the first from the
second equation gives an equation which is divisible by
r − s:

(r − s)(3rs + a2(r + s) + a1) = 0,

or more simply,

3rs + a2(r + s) + a1 = 0

If we subtracts times the first equation fromr times
the second equation, we get

(r − s)(a2rs + a1(r + s) + 3a0),
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or more simply,

a2rs + a1(r + s) + 3a0 = 0

Since we have 2 linear equations in the 2 unknowns
r + s andrs, we can solve for them. Furthermore, given
r + s and rs, we can construct the quadratic equation
x2 − (r + s)x + rs = 0, which can be solved (see above)
for r ands. Thus, our constructed quadratic equation for
r ands (after clearing fractions) is

(3a1 − a2
2)x

2 + (9a0 − a1a2)x + 3a0a2 − a2
1 = 0

Now that we haver, s in hand, we can solve forD/C
using the third equation:

D/C = 3

√

−p(r)/p(s)

If we now arbitrarily setC = 1, then we have all 4
Möbius parameters:

A = C(A/C) = r

B = D(B/D) = s 3

√

−p(r)/p(s)

C = 1

D = D/C = 3

√

−p(r)/p(s)

Using these parameters, we can Möbius transform the
3 cube roots of 1 into the roots ofp(z):

z =
Ay + B

Cy + D
=

ry + s 3

√

−p(r)/p(s)

y + 3

√

−p(r)/p(s)
,

y = 1, (−1 +
√

3)/2, (−1 −
√

3)/2.

We can simplify our constructed equation as:

rs(x) = x2 +
3p

(

−a2

3a3

)

p′
(

−a2

3a3

) x −
p′

(

−a2

3a3

)

3
= 0.

This equation is equivalent to the traditional cu-
bic “discriminant” equation u2 − p(−a2/3a3)u −
(p′(−a2/3a3)/3)3 = 0 with the substitutionx =
−3u/p′(−a2/3a3).

We were sloppy in our derivation, because we assumed
that r − s 6= 0. However, if r = s, then our Möbius
transform is singular, which cannot happen if the roots of
p(z) are distinct. Furthermore, we assumed thatp(r) 6= 0
andp(s) 6= 0. Butp(r) = 0 orp(s) = 0 only if the degree
of gcd(p(z), rs(z)) is greater than zero. When this gcd
computation is performed symbolically, we find thatp(z)

andrs(z) can share roots only when the roots ofp(z) are
not distinct orp′(−a2/3a3) = 0. But p′(−a2/3a3) = 0
implies the trivial case which is handled by a similarity
transform. Thereforep(r) 6= 0 andp(s) 6= 0.

We can therefore compute the roots ofp(z) using ma-
trix multiplication, as follows:

(

3 −a2

0 3

)





r s 3

√

−p(r)
p(s)

1 3

√

−p(r)
p(s)





(

1 −1 +
√

3 −1 −
√

3
1 2 2

)

except that if both inner coefficients are zero after trans-
lating to the center of mass, replace the middle matrix
with

(

3
√−a0 0

0 1

)

We thus have an algorithm for a cubic polynomial.
First, computeg(z) = gcd(p(z), p′(z)); g(z) will be
nontrivial only when there are repeated roots. If the de-
gree ofg(z) is 2, then we have a triple root, andp(z) =
(z − r)3, sor = −a2/3. If the degree ofg(z) is 1, then
we have a double root,g(z) is trivially solved to produce
that root, and the third root is obtained fromp(z) by syn-
thetic division. If the degree ofg(z) is 0, then we have
3 distinct roots, and can then construct a Möbius trans-
form to map these roots into the cube roots of 1. Shift the
polynomial to the center of mass by using the substitution
w = z + a2/3. If now a1 = a2 = 0, then we have the
3 roots that are the cube roots of−a0. Finally, construct
the Möbius transform according to the above equations,
and then use it to map the cube roots of 1 into the roots of
the given equation.

Although a Möbius mapping can transform any cubic
having distinct roots into the formz3 − 1 = 0, this map-
ping is not unique because there are 3! = 6 permutations
of the cube roots of 1, and any permutation of these cube
roots can be Möbius-mapped into the roots of the given
cubic. Thus, if we have a Möbius mapping from the cube
roots of 1 into the roots of the given cubic, we can always
compose it with a Möbius mapping which permutes the
cube roots of 1 to produce a different Möbius mapping of
the cube roots of 1 into the roots of the given cubic.

Solving the general cubic equation essentially “uses
up” all the degrees of freedom of the Möbius trans-
form. Given any (non-singular) Möbius transform(Az +
B)/(Cz + D), we can transform the cube roots of 1 into
their imagesr1, r2, r3 under the transform. So long as
ri 6= ∞, the product(z − r1)(z − r2)(z − r3) is a cubic
polynomial. If one of theri is ∞, sayr3 = ∞, then our
cubic is “really” a quadratic with 2 distinct finite roots. Of
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course, for any cubic polynomial obtained as the image of
a Möbius transform, there are 5 other Möbius transforms
which map into the same polynomial.

We note that transforming a general cubic equation
with distinct roots into the canonic formz3 − 1 = 0 is
elegant and intuitive, but not the only way to solve the cu-
bic. For example, we could Möbius transform the general
cubic with distinct roots into a palindromic cubic of the
formAz3+Bz2+Bz+A = (z+1)(Az2+(B−A)z+A),
and thereby reduce the equation to a quadratic. Alterna-
tively, we could Möbius transform the general cubic into
the equation(z+1)z(z−1) = z3−z. This method is es-
pecially interesting when the roots of the cubic are known
a priori to be real,12 because in this case the Möbius co-
efficients are all real.

Solving a quartic (biquadratic) polynomial

Quartic polynomials have 4 roots. Sincez4 − 1 has all
4 roots(±1,±i) on the unit circle, and since one can
construct quartic polynomials whose roots are not on a
circle, we cannot hope to use just a Möbius transforma-
tion to transform an arbitrary quartic polynomial into the
canonic formz4 − 1. However, we may be able to utilize
enough of our insight gained from the cubic case to still
solve the quartic.

We recall that in the cubic case, we utilized a Möbius
transformation to produce a cubic polynomial in which
the two internal coefficients (a2 anda1) were both zero.13

We avoided a substantial amount of algebraic manipula-
tion by using Taylor series to extract the expressions for
these internal coefficients from the Möbius-transformed
polynomial.

We will utilize the same Möbius transform technique
on the quartic polynomialp(z) = z4 + 0z3 + a2z

2 +
a1z + a0 (notice that we have already translated to the
center-of-mass of the 4 roots to assurea3 = 0) to produce
a polynomialq(y = b4y

4 + 0y3 + b2y
2 + 0y + b0 — i.e.,

theoddcoefficientsb3 of y3 andb1 of y are bothzero. The
polynomialq(y) produced by this Möbius transformation
is now just a quadratic equation in disguise —q(y) =
r(y2). We can then solve this quadratic for 2 values, the
square roots of which become 4 values. These 4 values
are then Möbius-transformed into the roots of the original
quartic equation.

12For example, the cubic equation could be the characteristicequa-
tion of a 3x3Hermitianmatrix.

13We thus produced a “bicoastal” polynomial.

In more detail, we construct the equations to guarantee
thatb3 = 0 andb1 = 0:

4p(r) − (r − s)p′(r) = 0

4p(s) + (r − s)p′(s) = 0

As before, if we subtract the first from the second, the
resulting equation is obviously divisible byr − s:

2rs(r + s) + a2(r + s) + a1 = 0

2a2rs(r + s) + a1(r + s)2 − 6a1rs + 4a0(r + s) = 0

Solve the first equation forrs, and then substitute into
the second. After clearing fractions, we get acubicequa-
tion in the variabler + s. Solve this equation using the
techniques above, and then substitute back into the first
equation to getrs. Finally, construct thequadraticequa-
tion x2− (r+s)x+ rs = 0, and solve it forr, s, as in the
case of the cubic. We now utilize this Möbius transform
to produce the quartic/quadraticr(y2), which quadratic
is again solved using the techniques above. Thus, our
method for the quartic requires the solution of a cubic
plus 2 quadratics, or if we also count the quadratic used
in the solution of the cubic, we require in total a cube
root extraction plus 3 square root extractions to solve the
quartic.

As in the case of the cubic, there may be other ways to
utilize Möbius transforms to solve the quartic. For exam-
ple, it might be possible to Möbius-transform a general
quartic into a palindromic quartic, in which case palin-
dromic techniques would allow a reduction to a quadratic.

Conclusions

We found that we could use powerful geometric transfor-
mation techniques to produce canonic forms for polyno-
mials of degree 1, 2, and 3. For degree 4, we could not
produce a canonic form, but were nontheless able to re-
duce the quartic into a quadratic using a Möbius transfor-
mation analogous to that for transforming the cubic into
canonic form. Furthermore, given a general polynomial
p(z) of degreen, this particular Möbius transformation
can be used to produce a new polynomialq(z) of degree
n, but the coefficients ofzn−1 andz in q(z) are both zero.
Furthermore, the parameters of this Möbius transforma-
tion can be found by solving a polynomial of degreen−1.
Thus, it should be possible to transform anyquinticpoly-
nomial into the formz5 + Pz3 + Qz2 + R by solving a
quartic equation. However, our Möbius techniques can-
not be applied to further reduce this quintic polynomial.14

14Since it is easy to transform the coefficients ofzn, z0 to one, and
the coefficients ofzn−1 andz1 to zero, the coefficients in these “outer
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