Garbage In/Garbage Out

March M obius Madness with a Polynomial PostScript
March 32, 1995

Author: Henry G. Baker, http://home.pipeline.com/"hbaker1/htine, hbakerl@pipeline.com

Digital Dentistry, or, Poly Wants a Cracker

Algorithms for polynomial root extraction have been
known for about 500 years, but have on occasion been
jealously guarded secrets.

From the convoluted way these algorithms are pre-
sented today, one might conclude that they are still
00 %) o state secrets. The mathematics curriculum often seems
§© ]@ @ to be geared primarily to the weeding out of non-
P mathematicians, rather than to providing mathematical
insight for the rest of us. In this note, we attempt to pro-
vide some fun and insight along with some knowledge.

Excuse Newton’s Dust, or, This Paper is
Truly a ‘Dusty Deck’

%)
R
@@ Many numerical analysis texts recommend the use of
Newton’s method to find the roots of a polynomial.
Briefly, this method operates as follows. Given a poly-

Algorithms for extracting the roots of polynomials of the"oMial (), we make an initial guess, at a root for
2nd, 3rd and 4th degree are usually presented as cod€ Polynomial, and then compute a (hopefully improved)
H _ /
book recipes, with no insight about how such a recip@4€S%1 Using the formulay; = zo —p(z0)/p'(20), where
works or how it might have been discovered. This not& (?) IS the derivative op(z). This new guess, is then
shows how a clever high school student could use traridS€d to compute an even t‘)etter guesssing the same
formations (translation, scaling, rotation, inversior) o/ormula, and so on. It is ‘close e’nough to an actual
the complex plane to discover root-extraction methods fépon-repeated) roat, then Newton’s method converges
these polynomials. In some instances, the transformaduadratically to the root, doubling the precision of the
tions computed may be more valuable than the extract@§Proximation with every iteration.
roots. We are un-Abel to extend these methods to poly- Newton’s method for the square root &fis quite ele-
nomials of higher degree. gant:z;+1 = (2; + N/z;)/2—i.e., the improved guess is
the arithmetic averagenear) of the current guess and
This note also motivates the need for algebraic polftimes the inverse of the current guéss.
nomial root-extraction by visualizing the chaos pro-
duced by a numerical Newton method. Code is in- 2Tartaglia, an early solver of the cubic, met Ferrari, anyesolver
luded in the PostScript of thi f din the di of the quatrtic, in a public math contest (and you thoughtchéssvas
Cluged In the Fos _C“P ot this paper tound In the Irecxioring!) in Milan on August 10, 1548. Ferrari won and becarseer-
tory http://home.pipeline.com/"hbaker1/ visor of tax assessments, a very lucrative job. Cardanafsrmentor,
sigplannotices/ . who “lived in great poverty until he became a lecturer in neatlatics”
(1), published solutions for both the cubic and the quantichis Ars
Magna(1545). [EB94]
1Garver [Garver29a] [Garver29b] independently made theesam -On the other hand, if we used tgeometricaverage, then; 1 =
suggestion, as did Klein in 1888 [Klein56]. \/2iN/z; = /N, and we would need only one step.
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Figure 1: Images of circleg + 1| = 2/3 and|z — 1| =
2/3 under Newton square root mappings (z+1/2)/2.

We can investigate the convergence properties of Neliigure 2: Images of circles around roots of radius
ton’s square root method in the complex plane by fo2-44174 under Newton cube root mapping= (2z +
cussingonthe cas¥ =1 —i.e.,z;41 = (2 + 1/2;)/2. 1/2%)/3.

This method is quite robust so long ass not on the
imaginary axis. Once the method starts on the left or right . . ,
hand side of the imaginary axis, it stays there and cout the locations of the exceptions are no longer confined

verges to—1 or 1, respectively. However, if the method to one or more lines, but occupy regions which cover

starts on the imaginary axis, it stays there forever, b substantial fraction of the complex plane. Since this

i Nt — 2
jumps around quite a bit [Beeler72,#3(Schroeppel)]. \/\/@thOd gives each pqlm = (2/3)z+(1/3)(1/= )_three
also notice that every point — (= + 1/2)/2 hastwo preimage points (which can be found by solving a cu-

preimage pointsz and1/z (because + 1/ — 1/ + bic equation), we can find the preimages of 0, the preim-
1/1/z). Although computing the largest circle which39¢s of the preimages of 0, and so on. Thus, each excep-

guarantees convergence to 1 is problematic because bggrpal point gives rise to three more, and thus inhith

the center and the radius are unknown, it is easy to co Eelmggie gﬁ_”‘;rat!ﬁ% we ha%d r:0|8t_s—|.e., we_zt have

pute the largest circle centered on a root for which thi p0|r} ?\IW ;c ,W' be magpe thod in zxagtggrelra;-

method never escapes. We will call the radius of this cirtlo.nst N h-e\;]v ons f”o"t‘ roo fme (')t ' atn a | F'/

cle the “Schwartzchild radius” for Newton’s square roo omnts which map to Ui or fewer iterations. in Figure

method, by analogy with the radius of a “black hole” in> we show a simple recursive PostScript program which
' explores levels of this ternary tree and plots each one of

Einstein’s general relativity. The “Schwartzchild” radiu ) ) :
for the square root method is found by first noticing thaEhese exceptional points to show the fractal nature of this
set of exceptional points.

if 0 <z < 1,then(z+1/x)/2 > 1, and then solving the
quadratic equatio(1—r)+1/(1—r))/2 = 1+r, where One might presume that with this fractal behavior,
0 < r < 1. This quadratic simplifies tdr2 — 2r = 0 and there are no ‘nice’ regions. This presumption is incor-
has only 1 non-zero root = 2/3. Figure 1 is a plot of rect, as we can still compute a “Schwartzchild radius” for
the ‘black hole’ surrounding each square root. Newton’s cube root method, by solving the cubic equa-
tion (2/3)(1 — r) + (1/3)(1 —r)™2 = 1 + r. This

) cubic simplifies to5r® — 972 + 3r = 0, whose 2 non-

o that for the square root of 1z;11 = (2/3)z + gero roots arg9 + /21)/10, the smaller of which is

oy )
(1/3)(1/%;) —.e., the weighted average of the current, V/21)/10 = 0.44174. Once within a circle of this ra-
guess and the inverse square of the current gftidksy- X , .

dius around a cube root of 1, Newton’s method will never

ton’s cube root method is less robust than that for th%ave this circle again. Figure 2 is a plot of the ‘black

square root. “Most” initial guesses still converge to arootole, surrounding each cube root. In Figure 3, we again

4Note the lack of symmetry in this formula, compared with teait plOt these circles along with the myriad of exceptional

the square root—e.g., the ‘weights’ 2/3, 1/3 seem contrivedyley ~POINts which hint at chaos.
apparently agreed: “The solution is easy and elegant in dse of a
quadratic equation, but the next succeeding case of the egjoiation 50ur plot of the preimages of 0 is essentially the same as Eig8r
appears to present considerable difficulty” [Cayley1879c] of [Peitgen86], except that we also plot the Schwartzchaftius.

Newton’s method for the cube root of 1 is similar
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and theproductof the roots can be calculated fram:

Y ori=—an1/an  []ri=ao/an
i i

The center of massf the roots is—a,,_1/nag — the
root sum divided byn. Thus, we can easily compute
p(z — an—1/na,), which isp(z) translated to a coordi-
nate system in which the center of mass is now the origin,
and the coefficient of”~! in p(z — a,,_1/nayg) is thus
zero.

If p(2) is divided synthetically by — ¢, we get a quo-
tient ¢(z) and a remainder of degree smaller than 1 —
i.e., a constant. Thu:(z) = ¢(2)(z — ¢) + d. But
p(c) = q(c)(c — ¢) + d = d. Thus, the remainder @f(z)
divided byz — cis p(c).

If one of the roots; is zerg then the corresponding
linear factorz — r;, = z — 0 = 2z, in which case the
polynomial is a multiple ot and its constant coefficient

is zero. Thus, a zero root is obvious from the constant
Figure 3: Preimages of 0 under the Newton cube ro@gefficient of zero.

mappingz = (2z + 1/22)/3.
Pping= = ( 1=/ If r; = r;, for somei # j, then we have aepeated

) ) ] root, where themultiplicity of the root is the number of
~ The existence of chaotic regions about these excegacyrrences of the root in the factored polynomial. Using
tional points shows how important it is start Newton's  cajcylus, if we compute the derivatiyé(z) of the poly-
method with a good initial guess. If we start within ON&yomial p(z), then the multiplicity of a repeated root in
of the ‘black holes’, then we are guaranteed to convergge gerivative polynomial is one less than its multiplic-

and more importantly, we will converge monotonicallyity in the original polynomialp(z). In other words, if
(in terms of distance) to the closest root. We are therefojrﬁz) = q(2)(z — )™, thenp'(2) = ¢'(2)(z — r)™ +

willing to perform some computations to ensure a goog(z)m(z )yt = (2 — ) (g (2) (2 — 1)+ ma(2)),
starting point for Newton’s method. Unfortunately, it aP-assuming that is not a root of(z)
pears that for polynomials of degree 4 or less, computing

a good initial point is as difficult as algebraically comput- Using this fact, we can easily find all repeated roots by
ing one of the roots. (Schur-fire techniques which test fgfomputing the greatest common divisor of a polynomial
the presence of zeros in a circular region are known, batz) and its derivativey’(z) using polynomial “synthetic
they are outside the scope of this paper.) division™.

an(z — 7)™t

ged(p(2),p'(2))
ged(q(2)(z =)™, (z = )" M (d' (2)(z — ) + mq(2)))
(z—1)™ ' ged(q(2)(z — 1), ¢ (2)(z — r) + mq(2))

Properties of Polynomials

The n-degree polynomigh(z) = a,z™ + ap_12"* + =
... + a1z + ag has exactlyn complexrootsr;, such that
p(r;) = 0. In particularp(z) can be factored into a prod-
uct of linear factorsz — r;, together with the high-order

coefficienta,,.
Abel was | ere | saw Elba
p(z) = an [[(z =)
‘ Somewhat less well known is the fact thatjfis a root
Two facts are immediately evident from this represermsf the polynomiap(z), thenl/r; is a root of theeversed

tation: thesumof the roots can be calculated fram_;, polynomialr(z) in which the coefficients are listdzhck-
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wards® You may have already seen a Mobius transform before
without realizing it. For example, the complexctan-

_ -1 e ) oy
r(z) = aoz" + 12"+t anaz ta gentfunction is a rotated and scaled version of a Mdbius-

=2"p(1/2) transformed complelogarithmfunction:
We find this fact useful when the reversed polynomial has i 1—iz
more desirable properties than the original polynomial. arctan(z) = 7 log( 7 Tz

An interesting case is that of polynomial palin-
drome — a polynomial which is the same, both for- Maobius transforms are best understood as linear trans-
wards and backwards (also calledexiprocal polyno- formations on complex numbers expressed in homoge-
mial [Lovitt39] [Eves66])’ neous coordinates—i.e., paits, y) of complex numbers

The degree of palindromic polynomials can be refepresenting the ratie = x/y. Then the Mobius trans-
duced, using the fact thalhe inversel /r of every root form (Az + B)/(Cz + D) can be represented ihx 2

r is also a root If a palindromic polynomial is obdd matrix form as:

degree, then-1 must be a root because it must be its A B 5 Az + B
own reciprocal, and the linear factor- 1 can then be di- (C D) ( 1 ) = (Cz + D)
vided out using synthetic polynomial division. We there-

fore consider a palindromic polynomial e’endegree.
By dividing the2n-degree palindromic polynomial =)
by 2™ and pairingz* with 2%, we get

This form is more than suggestive—the composition
of two Mobius transforms is represented by matrix mul-
tiplication of the associated matrices. Furthermore, the
inverse of a given Mobius transform is represented by the
inverse of the matrix of the given transform. However,
due to the homogeneous nature of the representation, any
scalar multiple of a Mobius transform matrix represents
the same transform. We can use this property to “clear

p(2)/2" = 2a0(2"+1/2")+2a1 (2n_14+1/2"" ) +...4an

Consider the functions defined recursivelyWy(z) =
2,Vi(2)+2+1/2,Vp(2) = (2+1/2)Vp1(2) = Vp2(2).

By induction, fractions” from the representation of the inverse trans-
Vo(2) = (2 + 1/2)Vy1(2) — Vy_a(2) form of (Az + B)/(Cz + D):
— 2P 41/ A B\(D -B\_ (D -B\(A B
C D -C A ) \-C A C D
So we can now represeptz)/z" = 2aoV,(z) + AD — BC 0
2a1V,, — 1(2) + ... + ag. ButV,(z) is a degreey polyno- = < 0 AD — BC)

mialinz’ = z +1/z,s0p(z)/z" = q(z + 1/z), where

q(2) s only halfthe degree op(z). Some simple properties of Mobius transforms are: 1)

in the identity transformA = D # 0 andB = C = 0;
M Obius Transforms 2) in a translationA = D # 0, C = 0; 3) in a scal-

ing and/or rotationA # 0, D # 0, B =C = 0;4)in
The Mbobius transform is one of the most fascinating scaling/rotation plus a translationginilarity transfor-
transforms of the complex plane. Given 4 complex nunmmation), A # 0, D # 0, C' = 0; and 5) in an inversion,
bersA, B, C, D, the Mébius transform with these confor-B = C # 0, A = D = 0. The transform in which
mal (!) parameters maps the complex numbémto the A # 0, C # 0, D # 0, B = 0 corresponds to an inver-
number(Az+ B)/(Cz+ D). SolongasAD — BC # 0, sion, followed by a similarity transformation, followed by
this mapping is invertible. The Mobius transform is theanother inversion.
algebraic closure of the transforms generated by transla-The 3 distinct images of 3 distinct points determine a
tion (z = z + B), dilation (z = az), rotation ¢ = ¢*),  ynique Mdbius transform. A simple way to construct this
and inversion{ = 1/z). transform is the following. The Mobius transform map-
pinga = 0,b = oo, ¢ = 1 can easily be seen to be

6The characteristic polynomial of the matrik—! is a scalar multi-
ple of the reverse of that of A.
"The characteristic polynomial of amthogonalmatrix A (AAT = N (C - b> <Z - (I>
)

I) is a reciprocal polynomial. c—a 2 —D
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which has the associated matrix achieved by placing a sphere—e.g., a globe—on top of
the complex plane in such a way that the south pole of

(C —b 0 ) (1 _a) the sphere sits on the origin of the complex plane. The

0 c—aj\a —b projection is then obtained by considering a ray cast from

- . , ,  the north pole of the globe through any other point on the
The/M0b|us transform mapping = a’, b = _b_* lobe and then onto the plane. The point (other than the

¢ = ¢ can then be cor)structed as tbe composition ‘%orth pole) intersected by the ray on the sphere is then
the mappings = 0 = a’,b = 00 = U, c = 1 = ¢/, manned via the projection onto the point intersected by
which can be computed by multiplying the matrix of they, ray on the plane. Furthermore, this mapping is in-

type above associated with the first mapping by the Mggtipje if we associate the north pole of the sphere with
trix (which is the inverse of a matrix of the type above),

associated with the second mapping. For example, we ) )
can construct a Mobius mapping which permutes the 3 Itis not essential that the sphere sit on top of the plane,

cube roots of 1 by exchanging 1 a1 + v/3)/2, but and it is more convenient if the plane cuts the sphere at
leaving(—1 — \/g)/Q fixed: z = (—1 + \/3)/22. its equator. Thus, if the sphere has radius 1, then we can

. o ) ) compute the poiné + bi that the point(x, y, z) on the
Three distinct points in the plane determine a circle °§phere maps into and vice versa

a line (a line is a “circle through infinity”). Given any
other 3 distinct points, one may construct a Mdbius trans-
form. This Mobius transform maps not only the 3 given
points to their images, but it also mapsgery point on

the circle determined by the first 3 points into points ofNd
the circle determined by the second 3 points. We thus < % 2% 1— g2 bg)

T+ yi
1+2

(z,y,2) =

have the phraseMobius transforms map circles into cir- a + bi =
cles. This property means that the class of graphical ob-

jects constructed solely @oints linesandcircular arcs Th hi S cularly el b
is closed under Mdbius transforms, because any such ob- & stereographic projection is particularly elegant be-

ject is transformed into another object of the same dasgause it m‘akes more exphcn the symmetry of the map-
pinga + bi = 1/(a + bi) as well as the symmetry of

We will need some derivatives of the Mobius transihe other Mobius mappings. For example, the mapping
form. A4+ B a + bi = —a — bi induces the mappingz,y, z) =

14+a2+b2"1+a2+b2"1+a?+0b2

m(z) = 4D (—z, —y, z) on the globe, which is simply a rotation by
i 180° about the N-S pole. Similarly, the mappiag bi =
m'(z) = AD - BC _ A 7 1/(a + bi) induces the mappin@e, y, z) = (z, —y, —2)
(Cz+D)>  (Cz+D)? on the globe, which is simply a rotation B0° about
where the pole through the equator@t — 180° (the “a” axis).
A A B The mapping: + bi = —1/(a + bi) induces the compo-
“|C D sition of the previous two rotations to induce the mapping
_9CA (z,y,2) = (—=z,y, —z) on the globe, which is a rotation
m'(2) = ————= by 180° about the pole through the equatopat — 270°
(Cz+ D) P
(the “b” axis).
6C2A . o
m"(z) = —_— The most elegant part of the stereographic projection
(Cz+D) is the fact that circles on the globe are mapped into cir-
cles and lines on the complex plane, and conversely, lines
Stereographic Projection and circles on the complex plane are mapped into circles

on the globe. Thus, every Mobius transformation of the
Closely related to the Mobius transformation of the comeomplex plane induces a transformation of the globe in
plex plane is thestereographic projectiowhich maps the such a way that circles on the globe are transformed into
surface of a sphere onto the complex plane in an invether circles on the globe.
ible manner. Briefly, a stereographic projection can be ot all Mobius transformations induce merely rota-
8Simple “polylines” in theAutoCAD(r) drawing system from Au- tions of the globe. For example, Mobius transforms can
todesk, Inc., consist of lines and circular arcs. induce mappings of great circles (such as the equator)
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into smaller circles (such as a latitude), as well as indu&

ing mappings of 3 equidistant points on the globe into 3

non-equidistant points. However, those Mobius transfor- (The == command/function prints the top element of
mations whichdoinduce rotations can be expressed withhe stack and pops it offistack prints the whole stack
just two complex parametersAz + B)/(—B*z + A*), without popping it; clear clears the stack.) Other
whereA*, B* are the conjugates of, B, respectively. PostScript arithmetic operators includeg, sub, abs,

It is not mere coincidence, then, that we find that thisnul , div , mod, sin , cos, exp,In ,sqrt , etc.

Mobius subgroup is isomorphic to the (urd)aternions
which provide an elegant way to express arbitrary rigi(a
rotations in three dimensions.

We will not be long content with the built-in PostScript
perators, so we will want to construct our own. Two
operations that are often required in PostScriptzatgl
The stereographic projection can be used to map th@dsubl , which increment and decrement the number

roots of a polynomial onto a globe in such a way thagt the top of the stack, respectively.
the symmetry between a polynomial and its reverse poly-

nomial is evident. Since reversing a polynomial transs/aqd1 {1 add} def
forms each root to its inversel /r, and since the map- >/sup1 {1 sub} def
ping z = 1/z is simply a180° rotation of the globe, the >3 gdd1 ==
original roots plotted on the globe will simply follow the 4

globe during itsl80° rotation, while the arrangement of 53 g p1 ==

the roots is otherwise unchanged. The stereographic prp-

jection also makes the compl&ourier Transformmore

elegant—the Fourier Transform of a polynomial is thE{The “/ ” quotes the nameddd1 ” so that this symbol is

evaluation of the polynomial at evenly spaced intervalgeated literally, rather than having the interpreter tiy t
around the equator of the stereographic globe. execute it.)

Now suppose that we want to define a general

Visualization Using PostScript(tm) “add-n ” function. Rather than having to define each of
the functionsadd2, add3, etc., separately, we can de-

Although thePostScripanguage [Adobe90] was devel-fine a generic function-producing functiadd-n which
oped primarily as page description languader use in  takes an argument specifying the increment, and then re-
modern computer printers, this Forth-like language is Sufgrns the appropriateinctionon the stack.
prisingly powerful. We will use PostScript as both an “ap-
plication” language for symbolic and numeric computings/aqd-n {{add} 1 make-closure} def
in addition to using it as a graphical language for visualks/gqd2 2 add-n def
izing the results of these computations. In so doing, We/34d3 3 add-n def
will be doing the ultimate in “lazy evaluation”, since thes3 gqd2 ==
entire computation will be performed inside the printer i
a “procrastinating PostScript”!

PostScript is a stack-oriented language—all argumerigfore looking at the non-primitive operator
to a function are provided on the stack, and all result;ake-closure , let us first look at the code that
from the function are returned on the stack. Thus, thedd-n constructs.

PostScripadd function takes the two numbers from the

top of the stack and replaces them with a single number=2 add-n ==

the sum of these two arguments. PostScript also providgs add}

literal numbers and interactive execution (even on your

laser printer?), so typing the following will compute 2+3: 5o add-n is working correctly.  But what does
make-closure  do?

>2 3 add ==

9Hook up a serial line from your computer to the PostScriptieri  >/make-closure
start up your terminal emulation program in 7-bit ASCIl mpded {exch aload Iength dup 2 add

type executive<cr> . Although the characterexecutive  will
not be echoed, your efforts should be rewarded withaPostScript -1 roll add array astore cvx}
interactive prompt character [Adobe90,s2.4.4]. def
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Without going into detailmake-closure  simply cre- >/cadd {{add} map2} def
ates a new operator by appending some number of literatéconjugate

from the top of the stack, thus incorporating these param{[ exch aload pop neg ]}
eters directly into the code. def

We will require some number of operations on Vec_>/cnorm .
édup conjugate cmul aload pop pop}

tors of elements, constructed in PostScript using squar

brackets[] ’, for which PostScript provides a little na- >;jcesfcale

tive support. Let us first make a vector of lengtlof in- {mul} 1 make-closure map1}
tegers fronD up ton, which operation is known dsta def P
from the APL language [Browng88]: >/cdiv

{conjugate dup cnorm 1 exch div

>liota cscale cmul}

{0 1 3 -1 roll {} for array astore} def

def

>5 jota == We are now in a position to program polynomials with
[0 123 4] complex coefficients. We represent the polynomial)

i ; 2) =" Fan 12"+ taizta
We would like tomapa function over a vector to produce p(2) = an n-t 1 0

a vector of resultsnapl maps a function of 1 argument: having complex coefficients; by the “little-endian” (re-
versed) PostScript vector

>/mapl {[ 3 1 roll forall ]} def

>[3 1 4 1 5] {add1} mapl ==

[4 25 2 6] For example, the polynomiaf — iz + 3 is represented
by the vectof[3 0] [0 -1] [1 0]

We would also like to map a function of 2 arguments over We will require several operations on polynomials, in-
2 vectors to produce a vector of results. Such a functiguding polynomial evaluation at a particular point, poly-
can sum 2 vectors together element-by-element, and wemial differentiation, etc. For example, a functiofx)

call it map2: to compute an improved Newton approximation to a root
r is given byn(r) = r — p(r)/p'(r), wherep(z) is a
polynomial andy’(z) is its derivative, can be computed
by pc-newton

[apa1...an—1ay]

>/map?2

{exch dup dup length array copy
dup length 1 sub 0 1 3 -1 roll
{4 index 1 index get 3 index
2 index get 5 index exec % iteration on
2 index 3 1 roll put} for % a polynomial p.
4 1 roll pop pop pop} {dup pdiff exch

def {2 index peval exch

>/pc-newton % make a procedure
% to do a newton

>31415 E]_ 271828 2 index peval cdiv csub}
{add} map2 == 2 make-closure}
585979 def

_ _ >[2 2] [[-1 0] [0 O] [1 O
Using these functions, we can now progr@mmplex pc-newton exec ==
numbersnto PostScript, using the representatjdn4] [1.125 0.875]
for 3 + 44. In this papet? we give definitions otom-
plex number functions, where ac" is prepended to
the name of each PostScrital function—e.g.,cadd ,
conjugate ,norm, cscale ,cdiv :

Solving a linear polynomial

We solve a polynomial in an excruciatingly pedantic way,
104 this paper” is meant quite literally—if you have the Pestipt  IN Order to gve insight abOU_t how to qeal with h|ghe.r‘
code for this paper, you have the program code! order polynomials. The solution of the linear polynomial
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a1z + ap = 0 proceeds in two steps. First, we makeor more simplyp’(B) = 2B + a1 = 0.

the polynomiamonic! by dividing bya; to getp(z) =

z+ ag/a; = 0. We know that a polynomial of degree p(B)/(A*p"(B)/2) = p(B)/A* = —
1 has exactly one root, and this root can be transformed

2
by a simpletranslationinto a canonic location—e.g., the or more simplyA* = —p(B).
origin. The first equation is trivially solved forB =

—ay /2, whereupon the second equation becomés=
—p(—a1/2). This equation can be solved by extracting
roots: A = ++/—p(—a1/2). We can now recover the
roots of the original equation by substitutidgl into the
equationz = Ay + B:

Consider the substitution = y + B. Thenp(z) =
p(y+B) = (y+B)+ao/a1 = y+(B+ao/a1) = q(y).
The polynomial(y) will be in the canonic formy — 0 iff
B+agp/ay = 0. Solving forB, we getB = —ag/a;. We
can now calculate the root by substitutipg= 0 into the

equationz =y + B =0+ B = —ap/a;. r = A1)+ B
Solvi dratic polynomial SVbEs
olving a quadratiC polynomial
gaq POy =V -p(-a1/2) —a1/2
The traditional high-school derivation of the solution =—a1/24+\/(—a1/2)? —ao
of the general quadratic equation involves “completing
the square”. | never understood the motivation for this ro=A(-1)+ B
“stupid root trick” when | was in high school, and I still _ B
: L =—y- +B
don’t understand it today. My best motivation comes p(B)
from an understanding that a quadratic equation has ex- = —v-p(~a1/2) —a1/2
actly 2 roots, and so long as the roots are distinct, there = —a1/2 —\/(=a1/2)% — ag

exists a simplaimilarity transformatior(scaling/rotation
plus translation) that will map these 2 roots onto the We now recognize the traditional quadratic equation
two points+1 — i.e., we want to transform any given formulae. We first note thdtoth solutions forA work—
guadratic equation having distinct roots into the canoniene maps the roots, r; onto 1,-1, respectively, while the
form 22 — 1 = 0, whose solution we know because weother maps the roots,, r, onto -1,1, respectively. We
constructed this equation a$—1 = (2 —1)(z+1). The also note that although we assumed that the roots were
inverse of the similarity transformation appliecttd will  distinct, the final formulae work even when the roots are
then yield the roots of the original equation. the same! In this case, the rotation/scaling factoe 0,
First, make the quadratic polynomial monic by divid-SO that the two roots-1 map into the one root gf(z).
ing by its high order coefficient. We then hapé&) =
22 + a1z + ag. Qonsider the substif[u_tion = Ay + B. _Solving a cubic polynomial
Using Taylor seriesextract the coefficients of the substi-
tuted polynomial: If we translate a cubic polynomial to the center of mass of
its roots, we produce a cubic polynomial whose quadratic
p(z) =p(Ay + B) coefficient is zero. If after this translation the linear
=y?A%p"(B)/2 + yAp'(B) + p(B) coefficient—which can be Taylored a4 —as/3a3) —
= A%2 + A(2B+a1)y + B> + a1B + ao is also zero, then we have a trivial cubic equation of
9 the formbs(z + a2/3a3)3 + by = as(z + a2/3a3)3
= A%q(y), p(—a2/3a3) = 0, which is easily solved by extracting the
3 cube roots of-by /b3 = —p(—aa/3a3)/as. Thus, this

is a monic quadratic. . _ LR
a(v) d o ) ) trivial case can be solved with a simganilarity trans-
If we equate the coefficients of this equation to that ofymation

the canonic equatiog’ — 1, then we have 2 equations in

the two unknownsi, B: 2= Ay+ B
Ap'(B)/(A%"(B)/2) = p'(B)/A =0, =y\/—bo/bs + B

=y - a3+ B
11Since a monic polynomial has one less degree of freedom ngaki 4 p / 3

a polynomial monic is “monic depression”. = y\/ p(—az/3as3)/asz — az/as
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We can recover the 3 roots pfz) by substitutingl, associated wittEq(y):
(—1++/3)/2, and(—1 —v/3) /2 for y in the above equa-

tion. Er(y) = Ey’q(1/y)
.3 3
This trivial case having been disposed of, we can now =y’p((A/y + B)/(C/y + D))(C/y + D)
focus on the hard case of the cubic—where the linear co- = p((A + By)/(C + Dy))(C + Dy)>.

efficient is not zero after transforming to the center of

mass coordinate system. We know from our study of Therefore £ = Er(0) = p(4/C)C3. The coefficient
Mabius transformations that they can transform lines angk ;2 in ¢(y/) can also be computed by Tayloringy). By

circles into lines and circles. In particular, they can §ran setting the 3 low order coefficients gfy) to be the same
form any circle (or line) defined by 3 points into anyas,3 — 1, we get 3 equations:

other circle (or line) defined by the transform of each

of these 3 points. Therefore, we suspect that a Mobiug’ (0)/2! = r'(0)

transform could be used to transform a cubic equation _ /

p(z) = 234+bz+2+cz+d = 0 having distinct roots into =(D/C) (4/0)+ (B{E/C)A/C)p (4/9) :
the canonic equatios —1 = 0 in such a way that the dis- b

tinct roots ofp(z) are mapped onto the 3 cube roots of oner simply3p(A/C) — (A/C — B/D)p'(A/C) = 0.
—1,(=1+v3)/2,(-1—+/3)/2. A possible problem is

that the Mabius parameters might not be easily calculategh ) _ (1 /2 3p(B/D) + (A/C — B/D)p'(B/D)
from the coefficients of the given cubic equation. p(4/C) ’

We now consider the Mobius transformatian = or simply3p(B/D) + (A/C — B/D)p/(B/D) = 0.
(Ay + B)/(Cy + D). If this transformation is non-

singular, then we cannot hav¢ = D = 0. Since the (0) = (D/C)3p(B/D) _ 1
trivial similarity case has already been disposed of, we 1= p(A/C) 7
must haveC' # 0. For if C = 0, then the simple simi- )
larity transformatior{ A/ D)y + (B/D) could solvep(z), ~©F more simply,
but we already know that it can’t. Therefore # 0. Less p(A/C)
obviously, we must also hav@ # 0. Consider the case (D/C)3 = — )
D =0. Then p(B/D)

p((Ay + B)/(Cy + D))(Cy + D)? Since A/C and B/D figure so prominently in our

equations, we substitute= A/C ands = B/D:

= p((Ay + B)/Cy)(Cy)’ \ / /

= B*p((A/C) +1/(Cy/B))(Cy/B)? 3p(r) = (r—s)p'(r) =0

= B*p((4/C) + 1/z)z* 3p(s) + (r—s)p'(s) =0

- . (D/C)3 = _p(r)

But this is a polynomial translated hy/C, and then p(s)

reversed. If the two middle coefficients are both zero,

then reversing the polynomial will not change that, so |t should be obvious that subtracting the first from the

the translation byl /C alone must have made them bothsecond equation gives an equation which is divisible by
zero. But this is the same trivial case that we have alreagly_ ¢:

disposed of above.

If z = (Ay + B)/(Cy + D) in the equatiorp(z), we (r=s5)@3rs +ax(r+s)+a1) =0,

haveEq(y) = p(2)(Cy + D)* = p((Ay + B)/(Cy +  or more simply,
D))(Cy + D)3, wheregq(y) is a monic polynomial, and

where E is a function of A, B, C, D, and the coeffi- 3rs+az(r+s)+a; =0
cients ofp(z); E must now be determined. The coeffi-
cient ofy* in the polynomialEq(y)—i.e., E itself—can  |f we subtracts times the first equation from times

be found via Taylor series &sq"(0)/3!, but the algebra the second equation, we get
becomes quite involved. We therefore consider Taylor se-
ries applied to the reverse/backwards polynonfia(y) (r — s)(agrs + a1(r + s) + 3ap),
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or more simply, andrs(z) can share roots only when the rootg6£) are
not distinct orp’(—az/3as) = 0. Butp’'(—az/3as) = 0
azrs + ai(r +s) +3ag = 0 implies the trivial case which is handled by a similarity

transform. Thereforg(r) # 0 andp(s) # 0.
Since we have 2 linear equations in the 2 unknowns
r + s andrs, we can solve for them. Furthermore, giver{ri
r + s andrs, we can construct the quadratic equation
2? — (r+ s)z +rs = 0, which can be solved (see above) s/ =p(r)
for r ands. Thus, our constructed quadratic equation fo(% —a2) "N G (1 —-1+v3 —-1- \/5)

r ands (after clearing fractions) is 3 1 2 —pzzi;) 1 2 2

We can therefore compute the rootspdt) using ma-
X multiplication, as follows:

2\ ,.2 2 . . . .
(3a1 — a3)z” + (9ag — araz2)z + 3apaz — a7 =0 except that if both inner coefficients are zero after trans-

lating to the center of mass, replace the middle matrix
Now that we have, s in hand, we can solve fab/C  with

using the third equation: ( Y —ag 0)
0 1
D/C = /=p(r)/p(s) _ _ _
We thus have an algorithm for a cubic polynomial.

If we now arbitrarily setC’ = 1, then we have all 4 First, computeg(z) = ged(p(2),p'(2)); g(z) will be

Mobius parameters: nontrivial only when there are repeated roots. If the de-
gree ofg(z) is 2, then we have a triple root, andz) =
A=C(A/)C) =T (z — )3, sor = —ay/3. If the degree ofj(z) is 1, then
_ Y e rany we have a double roogz) is trivially solved to produce
B =D(B/D) = s/ =p(r)/p(s) that root, and the third root is obtained frgrfx) by syn-
=1 thetic division. If the degree aof(z) is 0, then we have
D=D/C=3/=p(r)/p(s) 3 distinct roots, and can then construct a Mobius trans-

form to map these roots into the cube roots of 1. Shift the

3 cube roots of 1 into the roots pfz): w = z+az/3. Ifnow a; = az = 0, then we have the
3 roots that are the cube roots-efiy. Finally, construct
Ay+B  ry+s¢/—p(r)/p(s) the Mobius transform according to the above equations,
= Cy+ D = v+ I/ —p(r)/p(s) | and then use it to map the cube roots of 1 into the roots of
the given equation.
y=1,(-1++3)/2, (-1 —/3)/2. Although a Mdbius mapping can transform any cubic
We can simplify our constructed equation as: having distinct roots into the forn#® — 1 = 0, this map-
ping is not unique because there are 3! = 6 permutations
3p(—a2) o ( —az) of the cube roots of 1, and any permutation of these cube
rs(z) = 2% + 398 ) 0 3as ) _ 0. roots can be Mobius-mapped into the roots of the given
P’ ( 5532) 3 cubic. Thus, if we have a Mobius mapping from the cube

roots of 1 into the roots of the given cubic, we can always
This equation is equivalent to the traditional cucompose it with a Mobius mapping which permutes the

bic “discriminant” equationu? — p(—a2/3a3)u — cube roots of 1 to produce a different Mobius mapping of
(p'(—az/3a3)/3)> = 0 with the substitutionz = the cube roots of 1 into the roots of the given cubic.
—3u/p'(—az/3a3). Solving the general cubic equation essentially “uses

We were sloppy in our derivation, because we assumeg” all the degrees of freedom of the Mdbius trans-
thatr — s # 0. However, ifr = s, then our Mobius form. Given any (non-singular) Mobius transfoftz +
transform is singular, which cannot happen if the roots aB) /(Cz + D), we can transform the cube roots of 1 into
p(z) are distinct. Furthermore, we assumed fi{a) # 0  their images-, 72, r3 under the transform. So long as
andp(s) # 0. Butp(r) = 0 orp(s) = 0 only ifthe degree r; # oo, the produc{z — r1)(z — r2)(z — r3) is a cubic
of ged(p(z),rs(z)) is greater than zero. When this gcdpolynomial. If one of the-; is oo, sayrs = oo, then our
computation is performed symbolically, we find th@t)  cubicis “really” a quadratic with 2 distinct finite roots. Of
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course, for any cubic polynomial obtained as the image of In more detail, we construct the equations to guarantee
a Mobius transform, there are 5 other Mobius transfornthatbs = 0 andb; = 0:
which map into the same polynomial.

P poly dp(r) = (r—s)p'(r) =0

_We note that trz_msforming a general cubic eql_Jation Ap(s) + (r — s)p'(s) =0
with distinct roots into the canonic form® — 1 = 0 is ] ]
elegant and intuitive, but not the only way to solve the cu™S before, if we subtract the first from the second, the
bic. For example, we could Mobius transform the gener&fSulting equation is obviously divisible by s:
cubic with distinct roots into a palindromic cubic of the 2rs(r +5) 4+ az(r +s) + a1 =0
form A23+B2?+Bz+A = (2+1)(A2%+(B—-A)z+A),
and thereby reduce the equation to a quadratic. Altern
tively, we could Mobius transform the general cubic intGolve the first equation fors, and then substitute into
the equatiorfz +1)z(z — 1) = 23— z. This method is es- the second. After clearing fractions, we getubicequa-
pecially interesting when the roots of the cubic are knowtion in the variabler + s. Solve this equation using the
a priori to be reaft? because in this case the Mobius cotechniques above, and then substitute back into the first
efficients are all real. equation to gets. Finally, construct thguadraticequa-
tionz? — (r+s)z+rs = 0, and solve it for, s, as in the
case of the cubic. We now utilize this Mobius transform
Solving a quartic (biquadratic) polynomial to produce the quartic/quadrati¢y®), which quadratic
is again solved using the techniques above. Thus, our
Quartic polynomials have 4 roots. Sineé — 1 has all method for thg quarti.c requires the solution of a cubic
4 roots (£1, +i) on the unit circle, and since one Can.plus 2 quadratlcs, or if we also count.the_ guadratic used
construct quartic polynomials whose roots are not on '8 the solution of the cubic, we require in total a cube
circle, we cannot hope to use just a Mobius transform&00t extraction plus 3 square root extractions to solve the
tion to transform an arbitrary quartic polynomial into theAuartic.
canonic formz* — 1. However, we may be able to utilize As in the case of the cubic, there may be other ways to
enough of our insight gained from the cubic case to stilltilize Mobius transforms to solve the quartic. For exam-
solve the quartic. ple, it might be possible to Mobius-transform a general
guartic into a palindromic quartic, in which case palin-
romic techniques would allow a reduction to a quadratic.

a2_a27’s(7’ +8) 4+ ai(r+s)? — 6ayrs +4ag(r +s5) =0

We recall that in the cubic case, we utilized a Modbiu
transformation to produce a cubic polynomial in which
the two internal coefficientsi anda,) were both zerd?
We avoided a substantial amount of algebraic manipul&onclusions

tion by using Taylor series to extract the expressions for

these internal coefficients from the Mobius-transforme¥/e found that we could use powerful geometric transfor-
polynomial. mation techniques to produce canonic forms for polyno-

mials of degree 1, 2, and 3. For degree 4, we could not

We will utilize the same Mobius transform techniquepro(mce a canonic form, but were nontheless able to re-
on the quartic polynomiab(z) = 2 + 02 + a22” +  gyce the quartic into a quadratic using a Mébius transfor-
a1z + ao (notice that we have already translated to thgyation analogous to that for transforming the cubic into
center-of-mass of the 4 roots to assuge= 0) to produce  canonic form. Furthermore, given a general polynomial
a polynomialy(y = bay" + 0y® +bay® + 0y + bo —i-€., () of degreen, this particular Mobius transformation
theoddcoefficientss of y> andb; of y are botrzera The  -an be used to produce a new polynomial) of degree
polynomialg(y) produced by this Mobius transformation,, pyt the coefficients of*—! andz in q(=) are both zero.
is now just a quadratic equation in disguise ¢{) = Furthermore, the parameters of this Mobius transforma-
r(y?). We can then_ solve this quadratic for 2 values, th§on can be found by solving a polynomial of degreel.
square roots of which become 4 values. These 4 valuepgus, it should be possible to transform aqintic poly-
are then Mobius-transformed into the roots of the origing{omial into the form:® + P23 + Q22 + R by solving a
quartic equation. quartic equation. However, our Mobius techniques can-
not be applied to further reduce this quintic polynonifal.

12For example, the cubic equation could be the charactegsti-
tion of a 3x3Hermitian matrix. 14Since it is easy to transform the coefficientszéf, 20 to one, and
13We thus produced a “bicoastal” polynomial. the coefficients o™~ ! andz! to zero, the coefficients in these “outer
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