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In our last episode, our hero was trying desperately téhat never converges.

slay a quadratic by strangling it with his mouse-cord, but | order to get more experience with this iteration pro-

instead he tripped over a root. Yes, | know, thisis a Surd-cess, we try this process on the equation 1)(z —2) =
Onegraphicalsolution for a quadratie?+Bxz+C =0 22— 3z + 2 = 0, and start choosing initial guesses at ran-

is attributed to Thomas Carlyle [Barbeau89]. Construaiom. Sincer;;; = 3 — 2/z;, we can readily calculate

the line segment from the poir(D, 1) and the point the following sequences with a pocket calculator.

(=B, C). Construct the circle through these two points

having this line segment as its diameter. Than z,, 3,2.33,2.14,2.07,2.03,2.02,2.01, ...

such that the pointsey, 0), (z2,0) are the points of inter- 4.95.2.9.91.2.04

section of this circle with the-axis, are the roots of the T

given quadratic equation. Here are the details: 0.5,-1,5,2.6,2.2,2.1, ...
B\ 2 C+1\? B [C+1 2 1.5,1.7,1.8,1.9,1.94,1.97, ...
s+=) +ly-——) =—+(—-1
2 2 4 2 —5,3.4,2.4,2.17,2.08, 2.04, ...
?+Br+y = (C+1)y=-C—-1+1 ~0.5,7,2.7,2.26, ...
w2+ Br+C = (C+1)y—y° So, in all these cases, our iteratidoesconverge, and to
Settingy = 0 gives us the points of intersection with thethe larger root{ = 2). This is a bit peculiar, since if
z-axis, which is the equatior® + Bz + C = 0. we happen to pick the smaller roct (1), the iteration

Suppose now that we wish to solve the quadratic equ&2NVerges on this smaller root. This leads us to investi-
tion 22 + Bz + C = 0, but don't know the quadratic for- gate what happens if we pick a number very close to the
mula. Or perhaps we know the formula, but don't knowsmaller root —e.gao = 1+ €. We get
how to find square roots. Out of idle curiosity we start 2
playing withiterativeprocesses to see if we can find roots Ty =3— 1+e ~3—2(1—¢)=1+2

of the quadratic in this way.
g y . Aha! We now see that if we start even a little bit away

Srom the smaller root, then we will movivice as far
away on the very first iteration. In other words, for this
iteration, the starting point, = 1 is ametatable state,
whereas the starting pointy = 2 is apparently atable
state.

whole equation byt, to produce the equation+ B +
C/x = 0. We can then put by itself on the left, giv-
ing the equationr = —B — C/z. If we now make an
initial guess forz, sayzy, we can produce a (hopefully
improved)z; by choosingr; = —B — C/x, or more ) _
generally, given a guess, we can produce the nextguess Ve are now ready to investigate theneralcase, to
zi41 = —B — C/z;. Obviously, ifz # 0 alreadyis a try t_o cha}racterlze uno!er what conditions and how fast
root, thenz; = o, so the sequence immediately conthis iterative process will converge on a root.

verges. Of course, this will not work with an initial guess  If we take the iterative formula; ., = —B—C/z; and

of o = 0. Inthe case where one of the roots is zero, howarrange the right-hand side as a fraction, wexget =
ever,C = 0, so that our iteration immediately produces—Bx; — C)/x;. This suggests that we generalize the
the other rootr; = —B — C/xg = —B — 0/x9 = —B. process slightly to produce not just a ney, but a new
On the other hand, iB = 0, thenz; 1, = —C/x;, sowe ratio z;11/yi+1 = —B — C(y:/x;), 1.e.,

get the alternating sequence i —Bur,—Cy,

xo, —C/x0, —C/(~C/x0) = 10, —C/ 0, ELC. Yir1 Ty
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Since both the top and bottom of the right-hand side afiag A1, A\2), thenD™ = diag A}, A}). In other words,
this equation are linear functions of andy;, we are led

to consider thenatrix equation M= (T (Al )E) ) 1)
0 X
DY SRV N
(1) - (7€) (%) oy 0)
Yit1 1 0 Yi o
— 1 T71
(5 )

An enormous amount is known about matrices
[Golub96], and we can bring it all to bear on our prob- Let us now make sure that the determinanfois 1,
lem. Those of you who have had linear algebra anide., |T'| = 1, which we can always arrange by dividing
have sharp eyes will instantly recognize our square matrany other diagonalizing” by |77, i.e., T = T'/|T’|.
(call it * M) as thecompanion matriof the polynomial Now let the elements of bea, b, ¢, d, i.e.,
22 + Bz + C. The companion matrix of a polynomial is
a matrix that is trivially constructed from the given poly- T — <‘1 b> and |T| = ad — be.
nomial, such that the ‘characteristic polynomial’ of the c d)’
matrix is equal to that given polynomial. Thus, the cha
acteristic polynomial of oul x 2 square matrix}/ is
2%+ Br + C. T_l_i<d —b)_(d —b)
After reformulating our iteration process asvatrix T|\=¢c a e a
iteration process, we see that we are looking feeetor

'Since|T| = 1, the inverse of " is thus

andM™ = TD™T~! can be written out as:

Tn n_(—-B -C "
V_(yn> M —( 1 0)

=T7D"T!

suchthat/V = AV, i.e,, - <a b> <)\711 0 > < d —b)

B _C . . e\ [ Awn c d 0 A3 —c a

1 0 Un ) yn ]\ Ayn _ [aAl bAZ d -=b

Al dAy —c a
This scalarnumberX # 0 will cancel from both the nu- [ ad\} —bcAy  —abA? + abA\y
meratorAz,, and the denominatoxy,,, leaving us with T \ed\} —cd\y —beA} + ad)\y
a ‘stationary valuer,, /y,. Such a v_ect.o‘V is called ,an C(ad\ —beNy  —ab(AF — D)
eigenvectofrough German translation: ‘own vector’), so =\ edOr = A3)  —beA? + ad)g
1 2 1 2

the solution to our iteration problem is an eigenvector for

the matrixAZ. Now consider the absolute valups |, |\2| of A1, Aq.

The iteration process described above has the effectlbfi\1| > [Az2], then|AT| >> |AZ] for sufficiently large
computing then-th power of our 2 x 2 matrix M and 7, SO that the terms involving7 will completely domi-
applying it to the initial guess, /yo. How can we char- nate those terms involvinkjy. Letn be sufficiently large.
acterize theM/"—the n-th power of this matrix\/? We Then

have the full power of linear algebra at our fingertips. n
M — (—B —C)

Suppose, for the moment, that our matdd is 1 0
‘diagonalizable’—i.e., there exists an invertible matrix adXp —beXy  —ab(\} — A3)
T such thatT-'MT = D, and D is diagonal® “\ed(\f = \3)  —beA} + ad)y

n o _ —1\n _ n —1 i —
ThenM™ = (TDT ') = T(D™)T ', soif D = ad\T —ab\?
T \ed\] —beA}

INote that we are not interested in actualfymputingthis ‘factored’
form of M, but only in using it to better understand the meaning of the 2\ ad —ab
maitrix powerM ™. M \ed —be
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We can nowignorethe factorA\?, because when com- M%.4 We can thus comput® as\; = a/c = ad/cd =
puting z,, /y., this factor will cancel out. Let us denote (—ab)/(—bc)—i.e., the ratio of either column d¥/.

M™ /Ay by M, i€, Moo = M™/AT. Then We have thus succeeded in modelling our simple iter-
ative arithmetic process as a matrix power. This allowed

ad —ab . . . .
M = cd  —be us to characterize the conditions under which the simple

iterative process would converge, and to what value.

Now applyingM.. to an initial guess: /4o, we have As we noticed when we performed the sequence of iter-
ative calculations on the calculator, this iterative pssce

Tn To doesn’t converge very fast. Empirically, the number of
(yn ) = M (yo ) correct digits in the result seems to be linearly related to
ad  —ab - t_he number of it.erations. We would Iikg to find an .itera—
= < cd —bc> < o ) tive process which converges more quickly than this.
adize — abyo Th_e budding computer scient.ist will instantly suggest
= ( cdg — beyo ) that instead ofteratively computing the matrix powers,
we would be better off successivedguaringthe matrix
— (a(d% - byo)) M, thus producing the powerfg’2". This process should
c(dzo — byo) get us to the answer we desire much more quickly. In-
a deed, with each squaring step, we might geice as
= (dzo — byo) ( c) much precision as the previous step.

The sequence of squarings for the companion matrix
But the numbetlzy — by, is cancelled out in the ratio of 42 — 34 + 2is:

Zn/Yn, and thuse,, /vy, = a/c, independent of the initial

guessrg/yo! In short, the iterative process we developed ( 3 -2 ) ( 7 —6 ) ( 31 =30 )

is a way to compute the ratig/c, wherea andc are the 10 )’\3 =2)’\15 —-14)°

first column entries in the invertible matriX. But what 511 —510 131071 —131070

is this ratioa/c? (255 —254) ’ ( 65535  —65534 )
Since we have 5 equations in the 4 unknowns ¢, d ) i

(4 equations fromM — T DT~ plus the equatioti’| — and the ratioa/c for these matrices are:

1), and one of these equations is redundant, we can solve 3.2.333.9.0667.2.0039. 2.0000. ...

for the entries:, b, ¢, d of T as follows? ’ ’ ’ ’ ’

1 Ak which does converge significantly faster than the iteration
T=(% by _ A1z x=3-2/z.
c d 1 A1
DY VP

Let us now see what happens when the roots are

L g 9 - :
In other wordsa/c = 1/(1/\1) = A1, SO our itera- identical—i.e.;z* — 2Az + A\* = 0. In this case,

tion does indeed produce the root of larger absolute value 2N )2
1.2 Note that nowhere did we actuallpmputethe fac- M = < 1 0 )
torizationT DT ! of M by producingl’ and D, but we

determined that we could extract the ratio of two entrie80

of T' by computing sufficiently large powers of the matrix M2 = ( (
M.

We also note that since the ratig/'c is independent  Thus, even when the roots are identical, the ratio of
of the initial guess, we need not explicitly make an inithe entries in the first column of the-th squaring will
tial guess at all, but merely compute the matrix powerstill converge to the value of the root. In such a case,
however, the matrix squaring convergence will only be

2 4 1))\21’ _2i)\2i+1‘)
21’/\21—1 (1 _ 21’)/\2I

2This solution also proves that and the matrix factorization exist,

solong as\i # Az. » “We have thusM-powered’ our companion. Note that this has the
SNote that the root osmaller absolute value can also be trivially effect of implicitly choosing the initial guess asB/1 = —B = (A1 +
extracted fromMloo asAz = b/d = —(—ab)/(ad) = —(=be)/(cd),  ),)/2—j.e., themean averagef the roots—since the first column of
which is minus the ratio of the elements of either row, or\as = i _B
C/ 1 =Cc/a. Mls( 1 )
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linear, as the ratig2’ + 1)/2° = 1 + 2~ convergesto 1 the previous quadratic equation in the variable The
only a single bit per iteration. point of root squaring is that the linear te@@' — B? of
Let us now see what happens when one root is the ndg}€ Néw equation is minus the sum of guaresof the
ative of the other—i.e.\;, = —\y, oraz? — A2 = 0. In  '00ts, |.e.,—)\§ — A2 If th_e absolute values of the roots
this “square root” case, differ, and this process is repeated,, then the root with
larger absolute value will eventually dominate in the sums
0 A2\2 A0 of the squares of the roots. Furthermore, if we continue
M? = (1 0 ) = ( 0 /\2) this root-squaring process, thé-th power of the larger
root will so dominate th@*-th power of the smaller root

so that the-th iteration is in the coefficient of the linear term of theth iteration,
; so that this coefficienis the 2*-th power of the root of
M2 = (/\2 0 ) larger absolute value. Then by taking t&th root of

0 A the absolute value of this number, we can finally find the

In this case, the ratio of the entries in the first cqumr‘?‘bsOIUte value of the larger robt.

is not possible to compute, but this will be obvious from While the root-squaring method works well for roots
the appearance of the mattl{?'. Although it works on Wwhose absolute values are different, it cannot handle the
many quadratic equations, this matrix-squaring proce§8se Where the absolute values are identical, which is al-
does not work for simple square roots. ways the case when the roots are complex conjugates of

We have shown aoot-squaringprocess for finding one another.

the roots of some quadratics, because at every step, weAnother way to empower the roots of the quadratic
squarethe roots from the preceding step: polynomialp(z) = x? + Bx + C is by means of the
o _ _ ‘logarithmic derivative’ power series expansion
M'M' = (TD'T'Y(TD'T™)

. /
— TD21T71 (logp(x))/ _ p ((E)
2 g p(x)
:T(S /\Qi)T'-1  2z+B
o 2 224 Bzx+C
=M _@= )+ (@)
. . . . (@ — A1) (z = A2)
But if we are merely interested in squaring roots, we 1 1
might do it more directly as = SV
(@ = A1) = Ao) (@ + A1) (@ + A2) = (27 = A)(2® — A3) _ oYM Y

Cl—z/M\ 1—x/X
= - M- A e
= — (81 + S22 + s3a” + s42” + ...)

wherey = z2. l.e., given the equatiop(z) = 22 + . ‘
Bz 4+ C = 0, we can compute a new equation whosand heres; = AT "+ ;. The point of this expansion is to
roots are thesquareof the roots of the given equation by show that the coefficients of the power series for the ratio

computing of polynomialsp’(z)/p(z) are the sums of the powers of
) ) the root inverses. In other words, the coefficient:6fn
p(x)p(—x) = (z° + Bz + C)(z° — Bz + C) this power series expansion is
= (2? + C + Bz)(2* + C — Ba) ) )
= (2? + C)? - (Bx)? - (Azfrl + /\éJrl)
=(y+0C)* - B%
— 2420y +C? — B If [A\q] > |)_\2|,_ then1_/|)\1| <_}/|)\2|, so that ag in-
creases] /A, will dominatel/ A} in the suml /A +1/\5.
=+ (2C — B?)y + C? e bi e coefficients larae or
=Y Yy Thus, if we pick two successive coefficients large enough,

This S.O-CfilleCG raeffeprocess produces a new quadratiC swe can also use this Graeffe method to produce a tight uppeicho
equation in the variablg whose roots are thequaresof on the size (absolute value) if the largest root [Zippel22]L
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their ratio will tend towards\,, i.e.,

S )\2_Z
Sip1 Ayt
i+1
i
Ap

Ratios of the formp’(z) /p(z) are particularly interest-

ing when finding roots, because any repeated roots will

cancel out. Thus, ip(z) = (z — \)?, thenp/(z) =
2(x — ), so

O RS
plz) (= A)?
2
oz — A
o =2/A
S l—x/A

=21/ A+ z/X2+22/X3 + 2% /M + )

root v/ N of N. In this case,

p(z;)
P (i)

Lit1l = Ti —

2x;
222 — 2?2 + N
2x;
7+ N
21‘1‘
T + N/:I:Z
B 2

In short, a better approximation to the square rooiVof
can be had byveragingthe current approximation with
the quotient ofV by the current approxmatidh.

Newton’s method usually converges very fast. Sup-
pose, for example, that we have a current approximation
V/N(1 + ) to the square root a¥. Then

and the ratio of successive coefficients converges to (ac-

tually it alreadyis) A.

Isaac Newton developed a clever and quite general

technique for finding roots. Suppose thffz) is a
function with a power serieg(z) = f(0) + f/(0)z +
17(0)x?/2!+.... Thenifz, is an initial guess for a root of
f(x), we can expand(x) in another power series around
the pointz = x:

fla—m0) = f(x0)+(x—x0) [ (wo)+(z—w0)* [ (20) /2!+...

If we now ignore the terms beyond the linear terms, then

fx — mo) = flxg) + (x — mo)f'(xp). Since we are
looking for aroot, wheref(xz) = 0, we assume that our
approximation is reasonable, and solve itfor

f(xo) + (x —20) f'(x0) = 0
f(xo)
f'(o)

+z—29=0

_ flzo)
e

r =2

In general, of course, we are looking for an improvement
a-

x;+1 Of z;, SO we make a sequence of linear approxim

tions:
f(zi)

f(w3)

Tit1 = X5 —

_ \/N(21+e) + N/VN(1+e€)
N(1+¢€)? +J%f
2v/N(1 +2e)
= VN uz?fl :)r 1
= VN> +22(61++6:)Jr :
)

2
€
=VvN |14+ ——r0
VN < M)
~VN (14¢€%/2)
Thus, ife is small, there? is considerably smaller, and we
have aguadraticallyconvergent algorithm for the square
root—i.e., the number of accurate bits in the reslau-
bleswith each iteration.

Ti+1

Yet another way to appreciate Newton'’s iterative
square root is to consider how it operates when finding
the square root oV = 1, considering each guess as a

Let us now consider Newton’s method for the quadratic e(garver32] attributes this square root methodHieron of Alexan-

2

equatiorp(z) = z* — N = 0, i.e., for finding thesquare

31
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ratio: [Garver32] Garver, R. “A Square Root Method and Con-
Tiv1 _ Ti/Yi +yi/Ti tinued Fractions.’Amer. Math. Monthi\39, 9 (Nov.
Yit1 2 1932), 533-535.
v} +y;

= [Golub96] Golub, G.H., and Van Loan, C.Matrix

2z:y; Computations, 3rd EdJohns Hopkins Univ. Press,
. cosh? a; + sinh? a; Baltimore, 1996.
~ 2coshay sinh oy . ) )
cosh 20 [Knuth81] Knuth, D.E.Seminumerical Algorithms, 2nd
= Soh S Ed.Addison-Wesley, Reading, MA, 1981.
= coth 2y [Melzak73] Melzak, Z.ACompanion to Concrete Math-
In other words. if ematics: Mathematical Techniques and Various Ap-
' plications John Wiley & Sons, New York, 1973.
Ty = C?Sh Y _ coth o, [Paterson72] Paterson, M.S. “Efficient Iterations for Al-
sinh o gebraic Numbers.” In Miller, R.E., and Thatcher,
then J.W., (eds.XComplexity of Computer Computations

. Plenum Press, New York, 1972.
xi+1/yi+l = coth 2041',

or, for generalV [Peitgen86] Peitgen, H.-O., and Richter, PIHe Beauty

' ' of Fractals: Images of Complex Dynamic Systems

z:/y; = V'N coth 2%ay, Springer-Verlag, Berlin, 1986.
where [Press86] Press, W.Het al. Numerical RecipesCam-
N atanh(\/N/(a: Iy )) bridge Univ. Press, 1986, ISBN 0-521-30811-9.
0= 0/ Y0 .
_ _ [Turnbull46] Turnbull, H.W.Theory of Equation®liver

(ao is real only whenlazo/yo| > VN  Since and Boyd, Edinburgh and London; New York: Inter-
|coth2'al = 1/|tanh2'a| approached very quickly science Publishers, Inc., 1946.

with increasing (assuming that # 0), we have another
proof that Newton's iteration converges to the squark’oung72] Young, D.M., and Gregory, R.A Survey of

root. This derivation also shows thatmt) > \/N, then Numerical Mathematics, Vol. IDover Publ., New
z; > /N for all i, i.e., z; convergesnonotonicallyto- York, 1972.
wardsyv/N.

[Zippel93] Zippel, R. Effective Polynomial Computa-
Not only is Newton's method particularly pretty ([Peit-  tion. Kluwer Academic Publishers, Boston, 1993.
gen86]), but it is also enormously efficient. [Paterson72]
shows that Newton's (Heron’s) method has optimal effigyeny Baker has been diddling bits for 35 years, with
ciency for quadratic equations, where by “efficiency” hgime ‘off for good behavior at MIT and Symbolics. In
means the number of bits of precision gained per iteratigi)g spare time, he collects garbage and tilts at wind-

relative to the number of operations performed per iterqj—ags_ This column appeared in ACM Sigplan Notices
tion. Herein we have show why Heron is our quadratigg > (Feb 1998), 34-39.

hero.

References

[Barbeau89] Barbeau, E.J.Polynomials Springer-
Verlag, New York, 1989.

[Frame45] Frame, J.S. “Machines for Solving Algebraic
Equations."Math. Tables and other Aids to Comput.
[, 9 (Jan. 1945), 337-353.

32



