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You Could Learn a Lot from a Quadratic:
II. Digital Dentistry
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In our last episode, our hero was trying desperately to
slay a quadratic by strangling it with his mouse-cord, but
instead he tripped over a root. Yes, I know, this is a surd...

Onegraphicalsolution for a quadraticx2+Bx+C = 0
is attributed to Thomas Carlyle [Barbeau89]. Construct
the line segment from the point(0, 1) and the point
(−B, C). Construct the circle through these two points
having this line segment as its diameter. Thenx1, x2,
such that the points(x1, 0), (x2, 0) are the points of inter-
section of this circle with thex-axis, are the roots of the
given quadratic equation. Here are the details:
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x2 + Bx + y2 − (C + 1)y = −C − 1 + 1

x2 + Bx + C = (C + 1)y − y2

Settingy = 0 gives us the points of intersection with the
x-axis, which is the equationx2 + Bx + C = 0.

Suppose now that we wish to solve the quadratic equa-
tion x2 + Bx + C = 0, but don’t know the quadratic for-
mula. Or perhaps we know the formula, but don’t know
how to find square roots. Out of idle curiosity we start
playing withiterativeprocesses to see if we can find roots
of the quadratic in this way.

One possibility that might occur to us is to divide the
whole equation byx, to produce the equationx + B +
C/x = 0. We can then putx by itself on the left, giv-
ing the equationx = −B − C/x. If we now make an
initial guess forx, sayx0, we can produce a (hopefully
improved)x1 by choosingx1 = −B − C/x0, or more
generally, given a guessxi, we can produce the next guess
xi+1 = −B − C/xi. Obviously, ifx0 6= 0 alreadyis a
root, thenx1 = x0, so the sequence immediately con-
verges. Of course, this will not work with an initial guess
of x0 = 0. In the case where one of the roots is zero, how-
ever,C = 0, so that our iteration immediately produces
the other rootx1 = −B − C/x0 = −B − 0/x0 = −B.
On the other hand, ifB = 0, thenxi+1 = −C/xi, so we
get the alternating sequence

x0,−C/x0,−C/(−C/x0) = x0,−C/x0, etc.

that never converges.

In order to get more experience with this iteration pro-
cess, we try this process on the equation(x−1)(x−2) =
x2−3x+2 = 0, and start choosing initial guesses at ran-
dom. Sincexi+1 = 3 − 2/xi, we can readily calculate
the following sequences with a pocket calculator.

3, 2.33, 2.14, 2.07, 2.03, 2.02, 2.01, ...

4, 2.5, 2.2, 2.1, 2.04, ...

0.5,−1, 5, 2.6, 2.2, 2.1, ...

1.5, 1.7, 1.8, 1.9, 1.94, 1.97, ...

−5, 3.4, 2.4, 2.17, 2.08, 2.04, ...

−0.5, 7, 2.7, 2.26, ...

So, in all these cases, our iterationdoesconverge, and to
the larger root (x = 2). This is a bit peculiar, since if
we happen to pick the smaller root (= 1), the iteration
converges on this smaller root. This leads us to investi-
gate what happens if we pick a number very close to the
smaller root — e.g.,x0 = 1 + ǫ. We get

x1 = 3 − 2

1 + ǫ
≈ 3 − 2(1 − ǫ) = 1 + 2ǫ

Aha! We now see that if we start even a little bit away
from the smaller root, then we will movetwice as far
away on the very first iteration. In other words, for this
iteration, the starting pointx0 = 1 is ametastable state,
whereas the starting pointx0 = 2 is apparently astable
state.

We are now ready to investigate thegeneralcase, to
try to characterize under what conditions and how fast
this iterative process will converge on a root.

If we take the iterative formulaxi+1 = −B−C/xi and
arrange the right-hand side as a fraction, we getxi+1 =
(−Bxi − C)/xi. This suggests that we generalize the
process slightly to produce not just a newxi+1, but a new
ratio xi+1/yi+1 = −B − C(yi/xi), i.e.,

xi+1

yi+1

=
−Bxi − Cyi

xi
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Since both the top and bottom of the right-hand side of
this equation are linear functions ofxi andyi, we are led
to consider thematrixequation

(
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yi+1

)

=
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−B −C
1 0

) (

xi

yi

)

An enormous amount is known about matrices
[Golub96], and we can bring it all to bear on our prob-
lem. Those of you who have had linear algebra and
have sharp eyes will instantly recognize our square matrix
(call it ‘M ’) as thecompanion matrixof the polynomial
x2 + Bx + C. The companion matrix of a polynomial is
a matrix that is trivially constructed from the given poly-
nomial, such that the ‘characteristic polynomial’ of the
matrix is equal to that given polynomial. Thus, the char-
acteristic polynomial of our2 × 2 square matrixM is
x2 + Bx + C.

After reformulating our iteration process as amatrix
iteration process, we see that we are looking for avector

V =

(

xn

yn

)

such thatMV = λV , i.e.,

(

−B −C
1 0

) (

xn
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)

≈ λ

(
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)

=

(

λxn

λyn

)

This scalarnumberλ 6= 0 will cancel from both the nu-
meratorλxn and the denominatorλyn, leaving us with
a ‘stationary’ valuexn/yn. Such a vectorV is called an
eigenvector(rough German translation: ‘own vector’), so
the solution to our iteration problem is an eigenvector for
the matrixM .

The iteration process described above has the effect of
computing then-th power of our 2 × 2 matrix M and
applying it to the initial guessx0/y0. How can we char-
acterize theMn—then-th power of this matrixM? We
have the full power of linear algebra at our fingertips.

Suppose, for the moment, that our matrixM is
‘diagonalizable’—i.e., there exists an invertible matrix
T such thatT−1MT = D, and D is diagonal.1

Then Mn = (TDT−1)n = T (Dn)T−1, so if D =

1Note that we are not interested in actuallycomputingthis ‘factored’
form of M , but only in using it to better understand the meaning of the
matrix powerMn.

diag(λ1, λ2), thenDn = diag(λn
1 , λn

2 ). In other words,

Mn = (T

(

λ1 0
0 λ2

)

T−1)n

= T

(

λ1 0
0 λ2

)n

T−1

= T

(

λn
1 0
0 λn

2

)

T−1

Let us now make sure that the determinant ofT is 1,
i.e., |T | = 1, which we can always arrange by dividing
any other diagonalizingT ′ by |T ′|, i.e., T = T ′/|T ′|.
Now let the elements ofT bea, b, c, d, i.e.,

T =

(

a b
c d

)

, and |T | = ad − bc.

Since|T | = 1, the inverse ofT is thus

T−1 =
1

|T |

(

d −b
−c a

)

=

(

d −b
−c a

)

andMn = TDnT−1 can be written out as:

Mn =

(
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1 0

)n

= TDnT−1

=

(
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) (
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) (
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(

adλn
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2 −abλn
1 + abλn

2
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2

)
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(
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2 −ab(λn
1 − λn

2 )
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2 ) −bcλn

1 + adλn
2

)

Now consider the absolute values|λ1|, |λ2| of λ1, λ2.
If |λ1| > |λ2|, then|λn

1 | >> |λn
2 | for sufficiently large

n, so that the terms involvingλn
1 will completely domi-

nate those terms involvingλn
2 . Letn be sufficiently large.

Then

Mn =

(

−B −C
1 0

)n

=

(
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2 )
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)
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We can nowignore the factorλn
1 , because when com-

puting xn/yn this factor will cancel out. Let us denote
Mn/λn

1 by M∞, i.e.,M∞ = Mn/λn
1 . Then

M∞ =

(

ad −ab
cd −bc

)

Now applyingM∞ to an initial guessx0/y0, we have
(

xn

yn

)

= M∞

(

x0

y0

)

=

(

ad −ab
cd −bc

) (

x0

y0

)

=

(

adx0 − aby0

cdx0 − bcy0

)

=

(

a(dx0 − by0)
c(dx0 − by0)

)

= (dx0 − by0)

(

a
c

)

But the numberdx0 − by0 is cancelled out in the ratio
xn/yn, and thusxn/yn = a/c, independent of the initial
guessx0/y0! In short, the iterative process we developed
is a way to compute the ratioa/c, wherea andc are the
first column entries in the invertible matrixT . But what
is this ratioa/c?

Since we have 5 equations in the 4 unknownsa, b, c, d
(4 equations fromM = TDT−1 plus the equation|T | =
1), and one of these equations is redundant, we can solve
for the entriesa, b, c, d of T as follows:2

T =

(

a b
c d

)

=

(

1 λ1λ2

λ1−λ2

1

λ1

λ1

λ1−λ2

)

In other words,a/c = 1/(1/λ1) = λ1, so our itera-
tion does indeed produce the root of larger absolute value
λ1.3 Note that nowhere did we actuallycomputethe fac-
torizationTDT−1 of M by producingT andD, but we
determined that we could extract the ratio of two entries
of T by computing sufficiently large powers of the matrix
M .

We also note that since the ratioa/c is independent
of the initial guess, we need not explicitly make an ini-
tial guess at all, but merely compute the matrix powers

2This solution also proves thatT and the matrix factorization exist,
so long asλ1 6= λ2.

3Note that the root ofsmaller absolute value can also be trivially
extracted fromM∞ asλ2 = b/d = −(−ab)/(ad) = −(−bc)/(cd),
which is minus the ratio of the elements of either row, or asλ2 =
C/λ1 = Cc/a.

M i.4 We can thus computeλ1 asλ1 = a/c = ad/cd =
(−ab)/(−bc)—i.e., the ratio of either column ofM∞.

We have thus succeeded in modelling our simple iter-
ative arithmetic process as a matrix power. This allowed
us to characterize the conditions under which the simple
iterative process would converge, and to what value.

As we noticed when we performed the sequence of iter-
ative calculations on the calculator, this iterative process
doesn’t converge very fast. Empirically, the number of
correct digits in the result seems to be linearly related to
the number of iterations. We would like to find an itera-
tive process which converges more quickly than this.

The budding computer scientist will instantly suggest
that instead ofiteratively computing the matrix powers,
we would be better off successivelysquaringthe matrix
M , thus producing the powersM2

k

. This process should
get us to the answer we desire much more quickly. In-
deed, with each squaring step, we might gettwice as
much precision as the previous step.

The sequence of squarings for the companion matrix
of x2 − 3x + 2 is:

(

3 −2
1 0

)

,

(

7 −6
3 −2

)

,

(

31 −30
15 −14

)

,

(

511 −510
255 −254

)

,

(

131071 −131070
65535 −65534

)

, ...

and the ratiosa/c for these matrices are:

3, 2.333, 2.0667, 2.0039, 2.0000, ...

which does converge significantly faster than the iteration
x = 3 − 2/x.

Let us now see what happens when the roots are
identical—i.e.,x2 − 2λx + λ2 = 0. In this case,

M =

(

2λ −λ2

1 0

)

so

M2
i

=

(

(2i + 1)λ2
i −2iλ2

i
+1

2iλ2
i
−1 (1 − 2i)λ2

i

)

Thus, even when the roots are identical, the ratio of
the entries in the first column of then-th squaring will
still converge to the value of the root. In such a case,
however, the matrix squaring convergence will only be

4We have thus ‘M -powered’ our companion. Note that this has the
effect of implicitly choosing the initial guess as−B/1 = −B = (λ1+
λ2)/2—i.e., themean averageof the roots—since the first column of

M is
(

−B
1

)

.
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linear, as the ratio(2i + 1)/2i = 1 + 2−i converges to 1
only a single bit per iteration.

Let us now see what happens when one root is the neg-
ative of the other—i.e.,λ1 = −λ2, or x2 − λ2 = 0. In
this “square root” case,

M2 =

(

0 λ2

1 0

)2

=

(

λ2 0
0 λ2

)

so that thei-th iteration is

M2
i

=

(

λ2
i

0
0 λ2

i

)

In this case, the ratio of the entries in the first column
is not possible to compute, but this will be obvious from
the appearance of the matrixM2

i

. Although it works on
many quadratic equations, this matrix-squaring process
does not work for simple square roots.

We have shown aroot-squaringprocess for finding
the roots of some quadratics, because at every step, we
squarethe roots from the preceding step:

M iM i = (TDiT−1)(TDiT−1)

= TD2iT−1

= T

(

λ2i
1 0
0 λ2i

2

)

T−1

= M2i

But if we are merely interested in squaring roots, we
might do it more directly as

(x − λ1)(x − λ2)(x + λ1)(x + λ2) = (x2 − λ2
1)(x

2 − λ2
2)

= (y − λ2
1)(y − λ2

2)

wherey = x2. I.e., given the equationp(x) = x2 +
Bx + C = 0, we can compute a new equation whose
roots are thesquaresof the roots of the given equation by
computing

p(x)p(−x) = (x2 + Bx + C)(x2 − Bx + C)

= (x2 + C + Bx)(x2 + C − Bx)

= (x2 + C)2 − (Bx)2

= (y + C)2 − B2y

= y2 + 2Cy + C2 − B2y

= y2 + (2C − B2)y + C2

This so-calledGraeffeprocess produces a new quadratic
equation in the variabley whose roots are thesquaresof

the previous quadratic equation in the variablex. The
point of root squaring is that the linear term2C − B2 of
the new equation is minus the sum of thesquaresof the
roots, i.e.,−λ2

1 − λ2
2. If the absolute values of the roots

differ, and this process is repeated,, then the root with
larger absolute value will eventually dominate in the sums
of the squares of the roots. Furthermore, if we continue
this root-squaring process, the2k-th power of the larger
root will so dominate the2k-th power of the smaller root
in the coefficient of the linear term of thek-th iteration,
so that this coefficientis the 2k-th power of the root of
larger absolute value. Then by taking the2k-th root of
the absolute value of this number, we can finally find the
absolute value of the larger root.5

While the root-squaring method works well for roots
whose absolute values are different, it cannot handle the
case where the absolute values are identical, which is al-
ways the case when the roots are complex conjugates of
one another.

Another way to empower the roots of the quadratic
polynomialp(x) = x2 + Bx + C is by means of the
‘logarithmic derivative’ power series expansion

(log p(x))′ =
p′(x)

p(x)

=
2x + B

x2 + Bx + C

=
(x − λ2) + (x − λ1)

(x − λ1)(x − λ2)

=
1

x − λ1

+
1

x − λ2

=
−1/λ1

1 − x/λ1

+
−1/λ2

1 − x/λ2

= −
(

s1 + s2x + s3x
2 + s4x

3 + ...
)

and heresi = λ−i

1 +λ−i

2 . The point of this expansion is to
show that the coefficients of the power series for the ratio
of polynomialsp′(x)/p(x) are the sums of the powers of
the root inverses. In other words, the coefficient ofxi in
this power series expansion is

−
(

1

λi+1

1

+
1

λi+1

2

)

If |λ1| > |λ2|, then1/|λ1| < 1/|λ2|, so that asi in-
creases,1/λi

2 will dominate1/λi
1 in the sum1/λi

1+1/λi
2.

Thus, if we pick two successive coefficients large enough,

5We can also use this Graeffe method to produce a tight upper bound
on the size (absolute value) if the largest root [Zippel93,11.2].
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their ratio will tend towardsλ2, i.e.,

si

si+1

≈ λ−i

2

λ−i−1

2

=
λi+1

2

λi
2

= λ2

Ratios of the formp′(x)/p(x) are particularly interest-
ing when finding roots, because any repeated roots will
cancel out. Thus, ifp(x) = (x − λ)2, then p′(x) =
2(x − λ), so

p′(x)

p(x)
=

2(x − λ)

(x − λ)2

=
2

x − λ

=
−2/λ

1 − x/λ

= −2
(

1/λ + x/λ2 + x2/λ3 + x3/λ4 + ...
)

and the ratio of successive coefficients converges to (ac-
tually it alreadyis) λ.

Isaac Newton developed a clever and quite general
technique for finding roots. Suppose thatf(x) is a
function with a power seriesf(x) = f(0) + f ′(0)x +
f ′′(0)x2/2!+.... Then ifx0 is an initial guess for a root of
f(x), we can expandf(x) in another power series around
the pointx = x0:

f(x−x0) = f(x0)+(x−x0)f
′(x0)+(x−x0)

2f ′′(x0)/2!+...

If we now ignore the terms beyond the linear terms, then
f(x − x0) ≈ f(x0) + (x − x0)f

′(x0). Since we are
looking for aroot, wheref(x) = 0, we assume that our
approximation is reasonable, and solve it forx:

f(x0) + (x − x0)f
′(x0) = 0

f(x0)

f ′(x0)
+ x − x0 = 0

x = x0 −
f(x0)

f ′(x0)

In general, of course, we are looking for an improvement
xi+1 of xi, so we make a sequence of linear approxima-
tions:

xi+1 = xi −
f(xi)

f ′(xi)

Let us now consider Newton’s method for the quadratic
equationp(x) = x2 − N = 0, i.e., for finding thesquare

root
√

N of N . In this case,

xi+1 = xi −
p(xi)

p′(xi)

= xi −
x2

i
− N

2xi

=
2x2

i
− x2

i
+ N

2xi

=
x2

i
+ N

2xi

=
xi + N/xi

2

In short, a better approximation to the square root ofN
can be had byaveragingthe current approximation with
the quotient ofN by the current approxmation.6

Newton’s method usually converges very fast. Sup-
pose, for example, that we have a current approximation√

N(1 + ǫ) to the square root ofN . Then

xi+1 =
xi + N/xi

2

=

√
N(1 + ǫ) + N/

√
N(1 + ǫ)

2

=
N(1 + ǫ)2 + N

2
√

N(1 + ǫ)

=
√

N
(1 + ǫ)2 + 1

2(1 + ǫ)

=
√

N
1 + 2ǫ + ǫ2 + 1

2(1 + ǫ)

=
√

N

(

1 +
ǫ2

2(1 + ǫ)

)

≈
√

N
(

1 + ǫ2/2
)

Thus, ifǫ is small, thenǫ2 is considerably smaller, and we
have aquadraticallyconvergent algorithm for the square
root—i.e., the number of accurate bits in the resultdou-
bleswith each iteration.

Yet another way to appreciate Newton’s iterative
square root is to consider how it operates when finding
the square root ofN = 1, considering each guess as a

6[Garver32] attributes this square root method toHeron of Alexan-
dria circa 200 A.D.
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ratio:
xi+1

yi+1

=
xi/yi + yi/xi

2

=
x2

i
+ y2

i

2xiyi

=
cosh2 αi + sinh2 αi

2 coshαi sinhαi

=
cosh 2αi

sinh 2αi

= coth 2αi

In other words, if

xi/yi =
coshαi

sinhαi

= cothαi,

then
xi+1/yi+1 = coth 2αi,

or, for generalN ,

xi/yi =
√

N coth 2iα0,

where
α0 = atanh

(√
N/(x0/y0)

)

.

(α0 is real only when |x0/y0| >
√

N .) Since
| coth 2iα| = 1/| tanh 2iα| approaches1 very quickly
with increasingi (assuming thatα 6= 0), we have another
proof that Newton’s iteration converges to the square
root. This derivation also shows that ifx0 >

√
N , then

xi >
√

N for all i, i.e., xi convergesmonotonicallyto-
wards

√
N .

Not only is Newton’s method particularly pretty ([Peit-
gen86]), but it is also enormously efficient. [Paterson72]
shows that Newton’s (Heron’s) method has optimal effi-
ciency for quadratic equations, where by “efficiency” he
means the number of bits of precision gained per iteration
relative to the number of operations performed per itera-
tion. Herein we have show why Heron is our quadratic
hero.
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