
SIGPLAN
ACM

Garbage In/Garbage Out

The COMFY 6502 Compiler
Author: Henry G. Baker, http://home.pipeline.com/˜hbaker1/home.html; hbaker1@pipeline.com

Last June [Baker97], we described the COMFY lan-
guage which is intended to be a replacement for assembly
languages when programming on ‘bare’ machines. This
month, we provide a description of the November, 1976
COMFY-65 compiler for the MOS 6502 8-bit processor
[MOSTech76], which processor—as the brains of the Ap-
ple II and the Atari personal computers—was one of the
most popular microprocessors of all time.1 Although our
work on COMFY-65 was primarily a pedagogical exer-
cise, our analogous COMFY-Z80 compiler was used to
develop the code for an intelligent ASCII terminal with a
512×512×1bitmapped display in 1979. Much of the pa-
per below was written in November, 1976, and has been
edited to reflect the changes resulting from our recent port
of the code from PDP-10 Maclisp to GNU Emacs Lisp
[GNUELisp90] for this paper. No attempt has been made
to describe the details of the 6502 architecture, except that
it has an 8-bit accumulator, two 8-bit index registers (‘i’
and ‘j’, renamed from ‘X’ and ‘Y’), a stack, and various
‘page zero’ locations can be used to hold full 16-bit indi-
rect addresses.

In this paper, we provide the code for theentire
COMFY-65 compiler, in order to demonstrate as force-
fully as we can the notion thatcompilers don’t have to
be big and complex in order to be extremely good and
extremely useful. We will wager that the text of this
compiler is perhaps1/10 to 1/100 the size of a standard
macro assembler and far more capable. With the power of
the entire Lisp language available for use within COMFY-
65 macros, the amount of intelligence one can embed
in these macros is limitless. Furthermore, the efficient
one-pass nature of the COMFY-65 compiler means that
COMFY can conceivably be used as the ‘binary’ load for-
mat, thus doing away with binary ‘loader’ formats com-
pletely.

1We understand that the 6502 architecture still lives on in the form
of ‘silicon macros’ for various chip design systems.

COMFY-65

COMFY-65 is a ‘medium level’ language for program-
ming on the MOS Technology 6502 microcomputer
[MOSTech76]. COMFY-65 is ‘higher level’ than as-
sembly language because 1) the language isstructured—
while-do, if-then-else, and other constructs are used in-
stead ofgoto’s; and 2) complete subroutine calling con-
ventions are provided, including formal parameters. On
the other hand, COMFY-65 is ‘lower level’ than usual
compiler languages because there is no attempt to shield
the user from the primitive structure of the 6502 and its
shortcomings. Since COMFY-65 is meant to be a replace-
ment for assembly language, it attempts to provide for the
maximum flexibility; in particular, almost every sequence
of instructions which can be generated by an assembler
can also be generated by COMFY. This flexibility is due
to the fact that COMFY provides all the non-branching
operations of the 6502 as primitives.

Why choose COMFY over assembly language?
COMFY provides most of the features of assembly lan-
guage with few of the drawbacks. In addition, the pro-
grams are far more readable than their assembly language
equivalents. For example, one of the biggest pains in as-
sembly language is generating labels for instructions that
will be branched to. Not only do these labels greatly
increase the size of the symbol table required, but ob-
scure the structure of the program. COMFY eliminates
all labels which are used for branching; names are used
only for variables and subroutines. This elimination of
labels is achieved by introducingif-then-else, while-do,
and other control structures into the language.

COMFY is faster and easier to use than assembly lan-
guage because it is onlyone passinstead of two (or
more). For this reason and the fact that its symbol ta-
ble is far smaller, there is no need to keep binary versions
of most programs because COMFY can live inside the
computer and compile programs directly into storage.

COMFY’s argument and parameter handling conven-
tions allow parameters to be accessed symbolically and
temporary locations to be allocated and accessed as eas-
ily as in Algol. The programmer is given the choice of

27

SIGPLAN
ACM

Garbage In/Garbage Out

leaving the argument on the stack or “shallow binding”
it to any location in memory [Baker78b]. (Shallow bind-
ing an argument to a location first saves the current value
of that location on the stack, then sets the location to the
value of the argument.) Thus, any subroutine can use lo-
cations on page zero without conflict by means of shallow
binding. Examples of this power will be shown after the
control primitives of COMFY have been presented.

Executable instructions in COMFY come in three fla-
vors: tests, actions, and jumps. Testshave two possible
outcomes:succeedandfail and therefore have two possi-
blecontinuations—i.e., streams of instructions to execute
next. If the test succeeds, thewin continuation is exe-
cuted; if the test fails, thelosecontinuation is executed.
On the 6502, the tests arecarry, zero, negative, andover-
flow, which succeed if the corresponding flags are on and
fail if they are off.

Actionsare simply executed and alwayssucceed; there-
fore thewin continuation always follows and thelosecon-
tinuation is always ignored. On the 6502, the actions
are all the instructions which do not divert the program
counter.

Jumpsare executed and ignore both their continua-
tions. On the 6502 the only two jump instructions are
Return(from subroutine) andResume(after interrupt).

COMFY’s compositional operators

(not e)

not is a unary operator which has a COMFY expres-
sion as an argument.not has the effect of interchanging
the win and lose continuations for its argument expres-
sion. In other words, the win continuation of(not e)
becomes the lose continuation ofe and the lose continua-
tion of (not e) becomes the win continuation fore.

(seq e1 e2 ... en)

seq takes a sequence of COMFY expressions and tries
to execute them in sequence. If they all succeed, then the
whole expression succeeds. If any one fails, the sequence
is immediately terminated and the lose continuation for
the whole expression is executed. In usual usage, all the
ei are actions, which corresponds to a simple instruction
stream.

(if e1 e2 e3)

if takes as arguments three expressions—e1, e2, and
e3. COMFY first executese1 and if it succeeds,e2 is
executed. The success or failure ofe2 then determines

the success or failure of the wholeif expression. If, on
the other hand,e1 fails, thene3 is executed and its success
or failure determines that for the wholeif expression. In
other words,if uses the success or failure ofe1 to choose
which of e2 or e3 to execute next; whichever one is not
chosen is not executed at all. Notice that the failure ofe1

cannot cause the failure of the whole expression.

(while e1 e2)
while takes two COMFY expressions as

arguments—e1 and e2. Intuitively, e1 is used to
control a loop which successively executese2. Every
time through the loop, COMFY executese1 and if it
succeeds, the loop is executed once again. Ife1 fails, the
loop is terminated and the success continuation for the
whole while expression is executed. The body of the
loop consists of the expressione2. If e2 succeeds, the
loop continues; but ife2 fails, the loop is exited and the
failure continuation for the wholewhile expression is
executed. This feature can be used to solve the problem
of multiple exits from loops. For example, suppose that a
loop is comparing two character strings for equality. The
loop must stop in one of two ways—either the strings
differ at some point or the comparison runs off the end of
one of the strings. A sample subroutine to do this task is
shown below.

(if (seq (lj # 0) ; for j=0 to n-1.
(while (seq (cj n) llt) ; llt fails if "carry" is set.

(seq (l @j x) ; compare x:y.
(c @j y)
equal ; fail if unequal.
j+1))) ; j=j+1.

(seq ... ; return equality.
return)

(seq ... ; return inequality.
return))

(alt e1 e2 ... en)

alt is the ‘dual’ of seq . alt takes a sequence of
COMFY expressions and tries to execute them in se-
quence. If they all fail, then the entirealt expression
fails. If any one succeeds, the sequence is immediately
terminated (i.e., the rest of the sequence is not executed)
and the entirealt expression succeeds. In usual usage,
theei are tests; thus,(alt e1 e2) succeeds if and only
if eithere1 or e2 succeeds (we don’t even find out if both
would have succeeded because only the first is executed
in this case).

(loop e)

Theloop expression expects a single argument which
is simply executed over and over again. It is equivalent
to the infinite expression(seq e e e ...) . Thus, the
loop expression can never succeed, for that would re-
quire an infinite number of executions, but it can fail.

(n e) = (seq e e ... e) (n times).

This COMFY expression is a shorthand for the expres-
sion (seq e e ... e) having exactlyn e’s in it. This

28

SIGPLAN
ACM

Garbage In/Garbage Out

makes many tasks like shifting on the 6502 much easier.
For example, to shift the accumulator left 3 positions, one
need only write(3 sl) .

How to Use COMFY-65

COMFY-65 lives in the file
http://home.pipeline.com/˜hbaker1/lisp/cfycmp.lsp .
In order to run COMFY, this file must be loaded into
GNU Emacs Lisp.

Set some variable—saymprog —to have the COMFY-
65 expression as its value. Now one need only say
(compile mprog <win> <lose>) , where<win> and
<lose> aare twonumberswhich indicate machine ad-
dresses to go to depending upon whether the program
succeeds or fails. In most cases, the program will return
with a return or a resume , so that both these numbers
will be ignored. Therefore, putting two zeros here will
usually work fine.

COMFY-65 compiles its code into the arraymemby
inserting the compiled code one byte at a time, working
its way down from the top. The Lisp variablef indicates
the lowest byte in this array which has been used so far.
compile also returns as its Lisp value the address of the
first byte of the program (the address to which one should
jms to in order to execute the program).2

COMFY’s symbol table is the atom structure of Lisp.
In other words, to define the labelx as referring to the
address decimal 60, one should execute the instruction
(setq x 60) to Lisp beforeone tries to compile a pro-
gram which refers tox . This must be done because
COMFY is a one-passcompiler, which needs to know
the values of its labelsbeforethey are used.3

The core intelligence of the COMFY compiler is in the
functionscompile , emit , and genbrc . compile re-
cursively examines the program while expanding macros
and callingemit andgenbrc to produce the actual code.
emit understands the various addressing modes and as-
sembles action instructions appropriately.genbrc is re-
sponsible for generating optimal conditional branches—
it tries like crazy to produce short branches, and succeeds
most of the time. Don’t let the short and sweet nature

2It is no accident that the recursive structure ofcompile is nearly
identical to that of a copying garbage collector [Baker78a]; the reasons
are left as an exercise for the reader.

3Due to this one-pass nature, formutually recursivefunctions and
for many other reasons, one may wish to utilize ajump tableto hold the
addresses of all functions.

of the COMFY-65 compiler fool you—it produces bet-
ter branching code than all but the very best optimizing
compilers.4

COMFY Macros

COMFY has a very powerful macro facility for handling
non-primitive instructions. This macro facility works by
pattern-matchingthe input expression to themacro tem-
plateand usingpattern-directed assemblyto compute its
output.

For example, suppose that the “rotate right” instruction
were not primitive on the 6502 (some older models have
this problem). Then we could define it (at least for the
accumulator) by giving COMFY the instruction:

(define cmacro rr ‘(8 rl))

The first two wordsdefine cmacro indicate that we
are defining a COMFY MACRO whosepatternis rr and
whosebodyis ‘(8 rl) . Since both the pattern and the
body are constants, COMFY replaces every occurrence
of rr as a machine instruction by(8 rl) (which in turn
compiles into(seq rl rl rl rl rl rl rl rl)).

To define “rotate right” for other than the accumulator,
we need to get hold of the address which is passed to
the rr macro and use it in the body. This is done by
executing:5

(define cmacro (rr . ,p)
‘(seq push (l ,@ p) rr (st ,@ p) pop))

Let us illustrate this macro with an example of its
use. Suppose the instruction(rr i foo) appeared in
a COMFY program. COMFY would notice thatrr was
a cmacro and match the pattern(rr . ,p) against
(rr i foo) . The first part,rr , matches and the sec-
ond part ,p indicates thatp is a variable which will
match anything and take that anything on as a value.
Thus, the value ofp becomes(i foo) . The body of
rr starts with a‘ indicating pattern directed assembly.
Inside the body,,@ p tells COMFY to “insert the value
of p here in the expression”. Thus the value of the
assembly becomes(seq push (l i foo) rr (st i

foo) pop) which is then compiled as if it had been

4This code also demonstrated in 1976 how to optimally compile
Lisp’s and , or and not expressions—the subject of a depressingly
large number of subsequent peer-reviewed non-mutually-referenced
journal articles—seemingly one for each new language.

5This Common Lisp syntax (translated from Maclisp) won’t work in
Emacs Lisp. See the Emacs Lisp code later in this paper.

29

SIGPLAN
ACM

Garbage In/Garbage Out

typed in originally. We note that due to the recursive na-
ture of the compiler, the embeddedrr in this body will
be expanded as in the first example above.

The intelligence for COMFY macros is found in the
functionsmatch , cases , fapply , andfapplyl . I’m not
particularly proud of this code, and I’m not sure that this
port to Emacs Lisp will work reliably, but it represents a
sample of our thinking circa 1976.

COMFY Programming Example

Below, we show one example of COMFY-65
programming—the computation of the Universal
Product Code (‘UPC’) parity check digit. This example
is not intended as a tutorial on computing this function,
nor as an example of particularly good code, but only to
show the flavor of COMFY programming.

;;; Universal Product Code Wand parity check.
(setq

upctable (compile ’(seq 13 25 19 61 35 49 47 59 55 11) 0 0)
code 10 ; upc code buffer
digit (+ code 12) ; digit buffer
temp (+ digit 12) ; temporary location.
upcwand
(compile

’(alt
(seq (fori (\# 6) (\# 12) ; complement right 6 upc digits.

(l i code)
(lxor \# 127)
(st i code))

(fori (\# 0) (\# 12) ; map codes using upctable.
(l i code)
(not

(forj (\# 0) (\# 10)
(c j upctable)
˜=\?)) ; fail if equal.

(stj i digit)) ; store index of upctable.
decimal ; set decimal arithmetic mode.
(l \# 0) ; clear ac.
(fori (\# 0) (\# 12) ; add up the even digits.

(+ i digit) ; loop control clears carry!
i+1) ; only every other one.

(st temp) ; save partial sum.
c=0 ; clear the carry.
(2 (+ temp)) ; multiply by 3.
(fori (\# 1) (\# 12) ; add up the odd digits.

(+ i digit) ; loop cotrol clears carry.
i+1) ; only every other one.

(lxor \# 15) ; select low decimal digit.
=0\? ; fails if non-zero.
return)

(seq break ; signal failure.
return))

0 0))

Compiler Source Code

Below is a listing of the COMFY compiler source code
recently ported to Emacs Lisp for thisSigplan Notices
paper. The major capability missing from this COMFY-
65 compiler is support for acase construct which would
allow dispatching to a number of different continuations
based on the actual value of a particular byte. Such
a case capability was included in a later COMFY-Z80
compiler—we leave adding it to COMFY-65 as an exer-
cise for the reader.

This COMFY-65 compiler was never used extensively,
so its overall quality should be suspect. The subsequent
COMFY compiler for the Z-80 was used for a substan-
tial programming effort—the software for an intelligent
bit-mapped display terminal—so it was debugged much
more thoroughly.

;;; Numbers in Emacs Lisp are always decimal.
;;; Define 6502 op codes.
;;; Basic test instructions.
(put ’c=1\? ’test 176) ;;; test carry=1.
(put ’c=0\? ’test 144) ;;; test carry=0.
(put ’llt ’test 144) ;;; logically <.
(put ’lge ’test 176) ;;; logically >=.
(put ’=\? ’test 240) ;;; equal.
(put ’˜=\? ’test 208) ;;; not equal.
(put ’=0\? ’test 240) ;;; equals zero.
(put ’˜=0\? ’test 208) ;;; not equal to zero.
(put ’v=1\? ’test 112) ;;; test overflow=1.
(put ’v=0\? ’test 80) ;;; test overflow=0.
(put ’<\? ’test 48) ;;; test arithmetic <.
(put ’>=\? ’test 16) ;;; test arithmetic >=.
(put ’<0\? ’test 48) ;;; test arithmetic <0.
(put ’>=0\? ’test 16) ;;; test arithmetic >=0.
;;; Group 0.
(put ’\? ’skeleton 32) ;;; test.
(put ’stj ’skeleton 152) ;;; store j.
(put ’lj ’skeleton 168) ;;; load j.
(put ’cj ’skeleton 200) ;;; compare j.
(put ’ci ’skeleton 232) ;;; compare i.
;;; Group 1.
(put ’lor ’skeleton 17) ;;; logical or.
(put ’land ’skeleton 49) ;;; logical and.
(put ’lxor ’skeleton 81) ;;; logical xor.
(put ’+ ’skeleton 113) ;;; add with carry.
(put ’st ’skeleton 145) ;;; store accumulator.
(put ’l ’skeleton 177) ;;; load accumulator.
(put ’c ’skeleton 209) ;;; compare accumulator.
(put ’- ’skeleton 241) ;;; subtract with borrow.
;;; Group 2.
(put ’asl ’skeleton 10) ;;; arithmetic shift left.
(put ’rl ’skeleton 42) ;;; rotate left.
(put ’lsr ’skeleton 74) ;;; logical shift right.
(put ’rr ’skeleton 106) ;;; rotate right.
(put ’sti ’skeleton 138) ;;; store i.
(put ’li ’skeleton 170) ;;; load i.
(put ’1- ’skeleton 194) ;;; decrement.
(put ’1+ ’skeleton 226) ;;; increment.
;;; random instructions.
(put ’trap ’skeleton 0) ;;; programmed break.
(put ’save ’skeleton 8) ;;; push processor state onto stack.
(put ’restore ’skeleton 40) ;;; restore processor state fro m stack.
(put ’push ’skeleton 72) ;;; push accumulator onto stack.
(put ’pop ’skeleton 104) ;;; pop accumulator from stack.
(put ’c=0 ’skeleton 24) ;;; clear carry.
(put ’c=1 ’skeleton 56) ;;; set carry.
(put ’seb ’skeleton 24) ;;; set borrow.
(put ’clb ’skeleton 56) ;;; clear borrow.
(put ’v=0 ’skeleton 184) ;;; clear overflow.
(put ’enable ’skeleton 88) ;;; enable interrupts.
(put ’disable ’skeleton 120) ;;; disable interrupts.
(put ’binary ’skeleton 216) ;;; set binary mode.
(put ’decimal ’skeleton 248) ;;; set decimal mode.
(put ’i+1 ’skeleton 232) ;;; increment i.
(put ’j+1 ’skeleton 200) ;;; increment j.
(put ’i-1 ’skeleton 202) ;;; decrement i.
(put ’j-1 ’skeleton 136) ;;; decrement j.
(put ’nop ’skeleton 234) ;;; no operation.

(put ’return ’jump 96)
(put ’resume ’jump 64)
(defvar jmp 76)
(defvar jsr 32)

(defvar mem (make-vector 10 0)
"Vector where the compiled code is placed.")

(setq mem (make-vector 100 0))

(defvar f (length mem)
"Compiled code array pointer; it works its way down from the t op.")

(defun gen (obj)
;;; place one byte "obj" into the stream.
(setq f (1- f))
(aset mem f obj)
f)

30

SIGPLAN
ACM

Garbage In/Garbage Out

(defun testp (e)
;;; predicate to tell whether "e" is a test.
(and (symbolp e) (get e ’test)))

(defun actionp (e)
;;; predicate to tell whether "e" is an action.
(and (symbolp e) (not (get e ’test))))

(defun jumpp (e)
;;; predicate to tell whether "e" is a jump-type action.
(and (symbolp e) (get e ’jump)))

(defun macrop (x)
(and (symbolp x) (get x ’cmacro)))

(defun ra (b a)
;;; replace the absolute address at the instruction "b"
;;; by the address "a".
(let * ((ha (lsh a -8)) (la (logand a 255)))

(aset mem (1+ b) la)
(aset mem (+ b 2) ha))

b)

(defun inv (c)
;;; invert the condition for a branch.
;;; invert bit 5 (counting from the right).
(logxor c 32))

(defun genbr (win)
;;; generate an unconditional jump to "win".
(gen 0) (gen 0) (gen jmp) (ra f win))

(defun 8bitp (n)
(let * ((m (logand n -128)))

(or (= 0 m) (= -128 m))))

(defun genbrc (c win lose)
;;; generate an optimized conditional branch
;;; on condition c to "win" with failure to "lose".
(let * ((w (- win f)) (l (- lose f))) ;;; Normalize to current point.

(cond ((= w l) win)
((and (= l 0) (8bitp w)) (gen w) (gen c))
((and (= w 0) (8bitp l)) (gen l) (gen (inv c)))
((and (8bitp l) (8bitp (- w 2)))

(gen l) (gen (inv c)) (gen (- w 2)) (gen c))
((and (8bitp w) (8bitp (- l 2)))

(gen w) (gen c) (gen (- l 2)) (gen (inv c)))
((8bitp (- l 3)) (genbrc c (genbr win) lose))
(t (genbrc c win (genbr lose))))))

(defun ogen (op a)
;;; put out address and op code into stream.
;;; put out only one byte address, if possible.
(let * ((ha (lsh a -8)) (la (logand a 255)))

(cond ((= ha 0) (gen la) (gen op))
(t (gen ha) (gen la) (gen (+ op 8))))))

(defun skeleton (op)
;;; return the skeleton of the op code "op".
;;; the "skeleton" property of op contains either
;;; the code for "accumulator" (groups 0,2) or "immediate" (1) addressing.
(logand (get op ’skeleton) 227))

(defun emit (i win)
;;; place the unconditional instruction "i" into the stream with
;;; success continuation "win".
(cond ((not (= win f)) (emit i (genbr win)))

;;; atom is a single character instruction.
((symbolp i) (gen (get i ’skeleton)))
;;; no op code indicates a subroutine call.
((null (cdr i))

(gen 0) (gen 0) (gen jsr) (ra f (eval (car i))))
;;; "a" indicates the accumulator.
((eq (cadr i) ’a) (emit (car i) win))
;;; "s" indicates the stack.
((eq (cadr i) ’s)

(gen (+ (skeleton (car i)) 24)))
;;; length=2 indicates absolute addressing.
((= (length i) 2)

(ogen (+ (skeleton (car i)) 4)
(eval (cadr i))))

;;; "i" indicates absolute indexed by i.
((eq (cadr i) ’i)

(ogen (+ (skeleton (car i)) 20) (eval (caddr i))))
;;; "j" indicates absolute indexed by j.
;;; this cannot be optimized for page zero addresses.
((eq (cadr i) ’j)

(gen 0) (gen 0) (gen (+ (skeleton (car i)) 24))
(ra f (eval (caddr i))))

;;; "\#" indicates immediate operand.
((eq (cadr i) ’\#)

(ogen (- (get (car i) ’skeleton) 8)
(logand (eval (caddr i)) 255)))

;;; "i@" indicates index by i, the indirect.
((eq (cadr i) ’i@)

(ogen (skeleton (car i))
(logand (eval (caddr i)) 255)))

;;; "@j" indicates indirect, then index by j.
((eq (cadr i) ’@j)

(ogen (+ (skeleton (car i)) 16)
(logand (eval (caddr i)) 255)))))

(defun compile (e win lose)
;;; compile expression e with success continuation "win" an d
;;; failure continuation "lose".
;;; "win" an "lose" are both addresses of stuff higher in memo ry.
(cond ((numberp e) (gen e)) ; allow constants.

((macrop e)
(compile (apply (get e ’cmacro) (list e)) win lose))

((jumpp e) (gen (get e ’jump))) ; must be return or resume.
((actionp e) (emit e win)) ; single byte instruction.
((testp e) (genbrc (get e ’test) win lose)) ; test instructio n
((eq (car e) ’not) (compile (cadr e) lose win))
((eq (car e) ’seq)

(cond ((null (cdr e)) win)
(t (compile (cadr e)

(compile (cons ’seq (cddr e)) win lose)
lose))))

((eq (car e) ’loop)
(let * ((l (genbr 0)) (r (compile (cadr e) l lose)))

(ra l r)
r))

((numberp (car e)) ; duplicate n times.
(cond ((zerop (car e)) win)

(t (compile (cons (1- (car e)) (cdr e))
(compile (cadr e) win lose)
lose))))

((eq (car e) ’if) ; if-then-else.
(compile (cadr e)

(compile (caddr e) win lose)
(compile (cadddr e) win lose)))

((eq (car e) ’while) ; do-while.
(let * ((l (genbr 0))

(r (compile (cadr e)
(compile (caddr e) l lose)
win)))

(ra l r)
r))

;;; allow for COMFY macros !
((macrop (car e))

(compile (apply (get (car e) ’cmacro) (list e)) win lose))
(t (emit e win))))

(put
’alt
’cmacro
’(lambda (e)

;;; define the dual of "seq" using DeMorgan’s law.
(list ’not

(cons ’seq
(mapcar ’(lambda (e) (list ’not e))

(cdr e))))))

(put
’call
’cmacro
’(lambda (e)

(let * ((p (cadr e)) (pl (cddr e)))
(sublis (list (cons ’pushes (genpush pl))

(cons ’p p)
(cons ’n (length pl)))

’(seq (seq . pushes)
(p)
(li s)
(land ii)
(sti s))))))

(put
’lambda
’cmacro
’(lambda (e)

(let * ((pl (cadr e)) (body (cddr e)))
(sublis (list (cons ’body body)

(cons ’xchs (genxchs pl))
(cons ’moves (genmoves pl)))

’(seq (li s)
(seq . xchs)
(seq . body)
(li s)
(seq . moves)
(return))))))

(defun genxchs (pl)
(cond ((null pl) pl)

(t (cons (list ’xch (list ’i (+ 258 (length pl))) (list (car pl)))
(genxchs (cdr pl))))))

(defun genmoves (pl)
(cond ((null pl) nil)

(t (cons (list ’move (list ’i (+ 258 (length pl))) (list (car p l)))
(genmoves (cdr pl))))))

(defun genpush (pl)
(cond ((null pl) pl)

(t (let * ((p (car pl)))
(append (‘ ((l (, p)) push)) (genpush (cdr pl)))))))

31

SIGPLAN
ACM

Garbage In/Garbage Out

(defun match (p e f alist)
;;; f is a function which is executed if the match fails.
;;; f had better not return.
(cond ((constantp p)

(cond ((eq p e) alist)
(t (funcall f))))

((variablep p) (cons (cons (cadr p) e) alist))
((eq (car p) ’quote) (cond ((eq (cadr p) e) alist)

(t (funcall f))))
((predicate p) (cond ((funcall (cadr p) e) alist)

(t (funcall f))))
((atom e) (funcall f))
(t (match (car p)

(car e)
f
(match (cdr p)

(cdr e)
f
alist)))))

(defun predicate (x)
(and (consp x) (eq (car x) ’in)))

(defun constantp (x) (atom x))

(defun variablep (x)
(and (consp x) (eq (car x) ’\,)))

(defun constantp (x) (atom x))

(defmacro cases (&rest a)
(‘ (quote

(, (catch ’cases
(fapplyl (cdr a)

(eval (car a))
’(lambda () (throw ’cases nil))))))))

(defun fapplyl (fl a fail)
;;; "fail" is a function which is executed if fapplyl fails.
;;; "fail" had better not return.
(cond ((null fl) (funcall fail))

(t (catch ’fapplyl
(fapply (car fl) a

’(lambda ()
(throw ’fapplyl

(fapplyl (cdr fl) a fail))))))))

(defun fapply (f a fail)
(let * ((alist (match (cadr f) a fail nil)))

(apply (cons ’lambda
(cons (mapcar ’car alist)

(cddr f)))
(mapcar ’cdr alist))))

(defmacro define (&rest a)
(let * ((ind (car a))

(patt (cadr a))
(body (cddr a))
(where (cond ((atom patt) patt)

((atom (car patt)) (car patt)))))
(or (get where ind) (put where ind ’(lambda (e) (cases e))))
(put

where
ind
(‘ (lambda (e)

(, (append (‘ (cases e (, (append (‘ (lambda (, patt))) body))))
(cddr (caddr (get where ind))))))))

nil))

(define cmacro (star . (, body))
(‘ (not (loop (, (append ’(seq) body))))))

(define cmacro (i2 (, p))
(‘ (seq (1+ (, p))

(if =0\? (1+ (1+ (, p)))
(seq)))))

(define cmacro (move (, x) (, y))
(‘ (seq (, (append ’(l) x))

(, (append ’(st) y)))))

(define cmacro (prog ((, v)) . (, body))
(‘ (seq push

(li s)
(move ((, v)) (i 257))
(, (append ’(seq) body))
(li s)
(move (i 257) ((, v)))
i-1
(sti s))))

(define cmacro (fori (, from) (, to) . (, body))
(‘ (seq (, (append ’(li) from))

(while (seq (, (append ’(ci) to)) llt)
(seq (, (append ’(seq) body)) i+1)))))

(define cmacro (forj (, from) (, to) . (, body))
(‘ (seq (, (append ’(lj) from))

(while (seq (, (append ’(cj) to)) llt)
(seq (, (append ’(seq) body)) j+1)))))

(define cmacro (for (, v) (, from) (, to) . (, body))
(‘ (seq (, (append ’(l) from)) (, (append ’(st) v))

(while (seq (, (append ’(c) to)) llt)
(seq (, (append ’(seq) body))

(, (append ’(1+) v))
(, (append ’(l) v)))))))

References

[Baker78a] Baker, Henry G. “Lisp Processing in Real
Time on a Serial Computer.”Comm. of the ACM21,
4 (April 1978), 280-294.

[Baker78b] Baker, Henry G. “Shallow Binding in Lisp
1.5.” Comm. of the ACM21, 7 (July 1978), 565-569.
Also, ShallowBinding.html or
ShallowBinding.ps.Z in my ftp directory.

[Baker97] Baker, Henry G. “COMFY—A Comfortable
Set of Control Primitives for Machine Language Pro-
gramming.” ACMSigplan Not.32, 6 (June 1997), 23-
27. Also,RealTimeGC.html or
RealTimeGC.ps.Z in my ftp directory.

[GNUELisp90] Lewis, Bill,et al. GNU Emacs Lisp Ref-
erence Manual (version 18). Free Software Founda-
tion, Inc. March, 1990. Seehttp://www.fsf.org/

for more information.

[MOSTech76] MOS Technology, Inc.MCS6500 Micro-
computer Family Programming Manual, 2nd ed. Jan-
uary 1976.

Henry Baker has been diddling bits for 35 years, with
time off for good behavior at MIT and Symbolics. In
his spare time, he collects garbage and tilts at wind-
bags. This column appeared in ACM Sigplan Notices
32,11 (Nov 1997), 25-30.

32

