
SIGPLAN
ACM

Garbage In/Garbage Out

I Have a Feeling We’re Not in Emerald City Anymore
Author: Henry G. Baker, http://home.pipeline.com/˜hbaker1/home.html; hbaker1@pipeline.com

Twenty years ago, the US DoD asked “What color
is my parachute [programmed in]?” The answer was
‘Green,’ and the rest is history, or so we have been
told. But there is more to this story—much, much more.
By piecing together information from unclassified docu-
ments, we are now able—for the first time—to bring you
the real story of the Ada Project, whose secrecy, scope
and cost rival those of the Manhattan Project.

In the early 1970’s, the US Department of Defense was
facing a software crisis of staggering proportions. Soft-
ware was becoming an increasingly important component
of defense systems, and the percentage of software costs
to hardware costs was rising precipitously. Something
had to be done to bring these costs back into balance.

Our leaders understood well the issues:

...our warfighting strategy sustains and builds
on...the application of information technology to
gain great military leverage to continue to give us
[an] unfair competitive advantage” [Perry96]

Yet, the US was facing a ‘Software Gap’ with the Soviets.
According to [Davis78], the Soviets had “one of the most
potent mathematical communities in the world”:

To an unusual extent, software productivity is a re-
search and development activity, and thus it bene-
fits from a relative Soviet strength. ...Thus soft-
ware would appear to have some relative advantages
over hardware, even within the scope of Soviet R&D.
...One of the reasons mathematics has done so well
in the Soviet Union is that it is relatively insensitive
to the constraints [of high quality materials]...Soft-
ware may have a similar advantage as long as it can
operate within local hardware limitations. [Davis78;
emphasis supplied]

Although Soviet computer hardware was inferior, partic-
ularly in memory technology (typical Soviet computers
had only a few hundred Kbytes of core and a few tens of
Mbytes of disk), Soviet software ingenuity might make
their hardware disadvantage moot:

The availability of ES hardware has resulted in
something of a ... software explosion... [Davis78]

Even more troubling were reports of incredible software
productivity from US projects using languages like Lisp,
APL, Prolog, Smalltalk and Forth. Entire robotic plan-
ning systems with natural language and graphics inter-
faces were programmed by just one or two people in Lisp.
Reams of PL/I code were replaced by a single line of
APL. Prolog obsoleted a generation of Cobol program-
mers. Smalltalk and Logo were taught to children, and
raised the spectre of a 12-year-old outproducing a dozen
beltway bandits. Perhaps most troubling of all was Forth,
with its ability to very quickly program substantial real-
time systems that took insignificant amounts of memory.

This software “productivity explosion” threatened the
very axiom of American military might—that more is
better, and a whole lot more is a whole lot better. Soft-
ware productivity was expanding faster than software de-
mand, and the trends predicted that by 1997 entire avion-
ics systems would be programmed by a single hacker
in sandals, love beads and a pony tail. It looked like a
handful of Soviet super-programmers using these pow-
erful new languages might wipe out any advantage from
American hardware prowess.

The American military could not afford to ignore
this Soviet software threat. Although the massive post-
Sputnik spending to upgrade American education had
produced some early success, SAT scores soon peaked
and began a sickening decline. Joe Geek might not be
able to compete mano-á-mano with Ivan Geek.

US defense contractors were also hopping mad. If the
trend of the increasing percentage of software to hard-
ware continued, and the productivity of software people
exploded, total system spending would fall precipitously.
In order to restore a proper balance, something had to be
done to dramatically increase the cost of computer hard-
ware.

After a number of top-secret meetings at the high-
est levels,1 the “Ada Project” was conceived. The Ada

1Rumors persist that the famous gap in the Nixon tapes coveredup

22

SIGPLAN
ACM

Garbage In/Garbage Out

Project was to be a disinformation campaign of unprece-
dented scope and duration, involving all of the branches
of the military,2 the President, the Queen of England,3 the
Congress, and some academics. Its goal was to divert So-
viet attention from truly productive computer languages
like Lisp, and convince them that only a bloated, grossly
inefficient, high order compiled language along the lines
of PL/I could be reasonably utilized in the deployment of
military embedded systems. The use of a standardized,
inefficient language would provide a one-two punch: it
would render super-programmers useless, and it would
increase the demands on hardware by more than two or-
ders of magnitude.

The Ada Project was inspired by the unexpected suc-
cess of the IBM System/360 architecture behind the Iron
Curtain. The Ada Project’s wizards4 reasoned that if the
Soviets could be lured into copying the 360 architecture,
they could also be lured into copying the Ada language,
and if this language were fiendishly designed to make
real-time systems essentially impossible to program, then
the Soviet military machine would grind to a halt.

Although Ada would also severely impact American
software productivity, it was felt that—just as cancer-
fighting chemotherapy nearly kills healthy tissue while it
kills tumors—the healthier US economy would be bet-
ter able to bear the severe burden of an unproductive
software industry than the Soviet economy could. Thus,
while American geeks were inferior to Soviet geeks, our
Elbonian hordes could beat their Mongolian hordes.

However, convincing crack Soviet programmers—
e.g., Ershov—to believe in this disinformation campaign
would be difficult:

There was also a strong bias on the part of Soviet
programmers who favored the ‘efficiency’ of ma-
chine or assembly language programming.Clearly
some of this bias rose from real considerations...
[Davis78; emphasis supplied]

The Ada Project’s strategy for this problem was code-
named ‘Dogfood.’ Just as dog food is purchased not

such a discussion. “We got some agreement that [low] cost and[high]
reliability was a problem, but the question was—what could be done...
We go the problem passed to ... the Secretary of Defense, which is
raising it to the “highest level” in the DoD...” [Whitaker93].

2DARPA jeopardized the cover story by providing only lukewarm
support.

3[Whitaker93] discloses that the Queen’s email name is ‘EIIR’, but
gives no domain name. The domain may beroyal.gov.uk (“British
Royalty Hold Court on the Internet,”L.A. Times, March 8, 1997).

4The Ada Project was conceived at Kirtland AFB, NM, near
Roswell.

by the dog himself, but by his owner, Soviet program-
mers have little control over the computers that they
use. Project Ada thus set up an elaborate top-down
bureaucracy in the finest central-planning tradition that
would have a special appeal for the Communist Party ap-
paratchiks, and the Soviet programmers would then be
forced to go along.

Even knowledge of the Ada Project’s name required
the highest clearances and a need-to-know. The code
name itself was an inside joke: Ada Augusta, Countess
of Lovelace, was a famous armchair programmer/system
architect who never in her entire life had gotten a sin-
gle program to compile, link, or run.5 Ada’s code name
was finally declassified—extensive research had shown
that no one ever got the inside joke.6

The Ada Project was designed from the beginning as
a international NATO project. Without the complicity
of other countries, it would have had much less cred-
ibility with Ivan. Furthermore, the American military
was not sure that American ingenuity could accomplish
such a fiendishly difficult task without help from abroad.
Prior to Ada, no one had ever attempted to design a com-
puter language whose primary goal was dysfunctionality.
However, the timely appearance of inscrutible documents
from the European Algol-68 project provided hope and
guidance.

The Ada Project’s plan was absolutely brilliant. Be-
cause high order languages already in use by the various
services and countries were known to work moderately
well, an excuse had to be found to not use them. The
cover story was that interservice rivalries could be min-
imized by not using these existing languages. Neither
could existing “proprietary” languages like PL/I or Mesa
be used; the cover story was that single companies would
unreasonably benefit.

The C language was an exceptionally difficult case. Al-
though the C language itself had lots of delicious ambigu-
ities to exploit, it had some major problems. C was small
and fast; it had small and fast compilers; and it had been
utilized by two people to build an entire operating system
that ran on small computers. This was precisely the sort
of capability that would give Ivan an advantage, so C had
to be buried.

...[The Ada wizards] took advantage of this connec-
tion between DARPA and Bell Labs to request their

5An analogous joke would be giving an Air Force plane the name
“Kiwi,” after a flightless bird.

6‘Project Ada’ was not the first name suggested. ‘Project Potemkin’
was rejected when it was realized that Soviets might recognize this old
Russian ruse.

23

SIGPLAN
ACM

Garbage In/Garbage Out

cooperation. When Bell Labs were invited to eval-
uate C against the DoD requirements, they said that
there was no chance of C meeting the requirements
of readability, safety, etc., for which we were striv-
ing, and thatit should not even be on the list of eval-
uated languages. [Whitaker93; emphasis supplied]

Furthermore, combinations of languages had to be exam-
ined in order to make sure that no synergies precluded
complete dysfunctionality.

All candidate languages were evaluated by more
than one contractor, and each contractor evaluated
several languages, thereby providing a technical
crosscheck on the individual evaluations. ...for each
language requirement, the contractor was to deter-
mine the degree of compliance of each of the can-
didate languages, to comment on the feasibility of
modifying the language to bring it into compliance,
andto identify features in excess of the requirements.
[Whitaker93; emphasis supplied]

In order to be successful as a disinformation campaign,
the Project had to be ‘public’ in such a way that innocuous
internal documents would be readily accessible to the So-
viets to convince them of the authenticity of the project.
The newly operational ARPANET fulfilled this require-
ment with the help of nodes conveniently located in neu-
tral countries:

The project was extraordinarily well documented...
The requirements were circulated externally,cer-
tainly far more so than has any other language
effort, before or since... The language compar-
isons and contract evaluations were published in
excruciating detail andare available to the pub-
lic... ...there were numerous Language Study Notes
written andmade available to a large community
over the ARPANET... All issues submitted have
been addressed,and results were available on the
ARPANET... [Whitaker93; emphasis supplied]

Before putting the actual Ada language design out for bid,
preliminary requirements documents were developed—
STRAWMAN, TINMAN, LIONKING, etc.—all a bit
dotty with just a little todo. However, in finest wa-
terfall tradition, the final requirements were writtenaf-
ter the winning language had already been defined.
These STEELMAN requirements [STEELMAN78] were
a masterful example of disinformation double-speak:

[The language] should emphasize program
readability. [Translation: It should be nearly
impossible to write a program that will compile
or execute.]

There shall be no language restrictions that
are not enforceable by translators. [Transla-
tion: No reasonable program will ever com-
pile.]

[The language] shall attempt to avoid fea-
tures whose semantics depend upon character-
istics of the object machine... [Translation: Is-
sues critical to embedded systems like time and
memory cost must be avoided.]

The language shall be completely and un-
ambiguously defined. [Translation: By us-
ing English as the definition, we can put off
‘completely and unambiguously’ defining un-
til enough experience has been accumulated to
make the decision that maximally reduces pro-
ductivity.]

Every source program shall ... have a
representation that uses only the following 55
character subset of ... ASCII... [Translation:
Ada must stay within the character set limita-
tions of Soviet I/O devices.]

Separately translated units may be assem-
bled into operational systems. [Translation:
Each system is to be shredded into small, sepa-
rately programmed units on a need-to-know ba-
sis, so that no one person can comprehend it.]

Four bidders developed languages: Red, Green, Blue and
Yellow. Although all four languages met the dysfunc-
tionality requirements, the Green language—an export
of Bull—was chosen after evaluators were told that they
were voting on a new color for their uniforms. Green’s
dysfunctionality for embedded systems was outstanding:

• no interrupts, prioritized or not

• a synchronization primitive that nobody had ever
heard of and was grossly expensive to implement

• no bit twiddling (no cyclic redundancy check or en-
cryption codes)

• no ability to manage storage

• no guarantee of aborting a task

• no ability to manage scheduling

• no ability to interface to hardware

24

SIGPLAN
ACM

Garbage In/Garbage Out

Ada initially planted a subconscious Y2K time-bomb:
“YEAR: INTEGER range 0..2000;” [Ada79, p.3-12], but
then got Third Reich ambitions: “YEAR: INTEGERrange
0..4000;” [Ada83, p.3-34], before settling on a Y2.1K
time-bomb: “subtype YEAR NUMBER is INTEGERrange
1901..2099;” [Ada83, p.9-11]. The prospect of every piece
of embedded military software in the world simultane-
ously signalling a constraint error at the end of a century
was too delicious for the wizards of Ada to pass up, and
fixing these time-bombs would guarantee full employ-
ment for the defense contractors they would retire to.

The Ada Project had to publicly appear decisive in or-
der to maintain its credibility: “...all other implementa-
tions of new high order programming languages for R&D
programs were halted.” [Whitaker93].7

The time to produce working, validated compilers ex-
ceeded all hope. Many years passed before the first val-
idated compilers appeared, and another two years before
they could be run at a customer site without crashing. To
establish credibility with the Soviets, the U.S. Navy spent
$40M developing a single Ada compiler. This at a time
when they could have had four different compilers from
four different competing commercial Ada vendors for a
total of $10M, or even purchased all four independent
Ada companies for less than $40M.

The dysfunctionality of Ada exceeded all expectations.
A company called Rational was formed to build a pro-
gramming environment for Ada, which itself was pro-
grammed in Ada. The Rational machine could never
manage its own storage and had to be rebooted every few
hours. Another Ada company’s compiler was written in
Ada, with multiple tasks for multiple compilations. Nei-
ther could it manage its own storage, and also had to be
constantly rebooted. If applications with minimal real-
time response requirements could not be programmed in
Ada, what hope would Ivan have with real-time avionics
systems?

The Ada compiler validation suite was cleverly de-
signed to test only exceptional cases, not common cases.
Its primary purpose was to detect undocumented en-
hancements, in case such an enhancement might prove
useful and functional. Validation thus proved only that
the compiler had no ambitions outside Ada; it said noth-
ing about the ability to recognize and compile legal Ada
programs.

The Ada validation suite also cleverly guaranteed that
no parser-generating tools could be used for the Ada lan-

7In order to allow real systems to continue to be developed, the Ada
Project secretly granted a large number of “waivers.”

guage by constraining the nature of syntax error mes-
sages, and by requiring that all such errors be found in a
single compilation. The DIANA intermediate data struc-
ture was also a stroke of genius, because any compiler
that used it used 10-100 times the memory of a C com-
piler running on the same host.

Because previous computer languages had evolved to
become more productive in response to user feedback, a
mechanism had to be developed to make sure that similar
improvements could not happen to Ada. In order to keep
Ada dysfunctional, very clever people (“Dystinguished
Reviewers”, or “Drs.”) were appointed to dispatch user
questions according to a formal protocol:

• Challenge the questioner’s programmerhood. Tell
him that no reasonable person would ever do this,
and he should spend 3 more months in a straight-
jacket at the Software Engineering Institute.

• Bury him in legalities. Explain how the features of
the language had been carefully designed to fit to-
gether in a certain way, and he couldn’t begin to un-
derstand the wisdom of these decisions.

• Change the validation suite. Make sure that these
kinds of programs won’t even compile in the future.

• If worse comes to worst, “elucidate” the already
“unambiguous” definition in a way that guarantees
that no one will ever want to bring up a similar ques-
tion again. The new interpretation will require all
Ada systems to be revised in incompatible ways that
also reduce performance by another 3X.

In order that the Ada Project’s cover not be blown, stu-
dents were kept away from actual Ada implementations.
It would have been most embarrassing if a student were
to compare Ada to Scheme, or even to C—it might lead
to an “Emperor’s New Clothes” situation. The teaching
of Ada was restricted to courses like ‘software engineer-
ing,’ where only ‘architecture’ was argued and diagrams
were drawn; programs were never allowed to actually be
compiled or run.

‘Software Reuse’ was another goal of the Ada Project.
To further reduce the cost of programming, programmers
were encouraged not to throw defective code away, but
to recycle it. At first, recycling bins of different colors
were set up. Later, when things got GUI, these bins were
replaced by ‘trash icons’ of different colors in the corner
of the screen. Old versions and little bits of code that
were cut but never pasted were forwarded to the SIMTEL

25

SIGPLAN
ACM

Garbage In/Garbage Out

recycling center. The SIMTEL recycling center’s motto
was: “we utilize everything but the SQL.”

We now know that the Ada Project was very success-
ful. Ivan accepted the Ada wizards’ humbuggering at face
value. At the time of the Fall of Communism, a number
of Soviet Ada projects were under way, and afterwards,
at least one Soviet Ada compiler was offered for com-
mercial sale over the Internet.

Now that the Wicked Witch of the East is dead, the
wizards have finally allowed Ada to evolve into Ada9X,
which fixed some of Ada’s more egregious dysfunctions.
However, even today the brilliance of Ada’s original con-
ception still shines brightly through.

That the Ada Project was able to keep its secret for 20
years is a tribute to the dedication and resourcefulness of
the wizards of Ada. It wasn’t easy being Green—those
associated with the Ada Project withstood great criticism
and still managed to keep a straight face. The Ada Project
cost billions and billions in direct and indirect costs, but
who can argue with the result? All of us owe a great debt
of gratitude to those in the Ada Project who helped keep
America free. We agree with Churchill: “Never in the
field of human conflict was so much owed by so many
to so few.” To memorialize those who fought this valiant
fight, we would like to dedicate The Cubicle of the Un-
known Programmer.

Ada, we salute you!

If I Only Had Ada

(Copyright c©1997 by Henry G. Baker. All rights reserved.)

(Sung to the tune “If I only had a Brain” from the movie “The
Wizard of Oz.”)

I could discriminate records,
deriving by the hoards, constraining the data.
Your packages, I’d be using,
while my names I’d be losing,
If I only had Ada.

I could loop away the days,
Suspending with delays, accepting every port.
And my coffee, I’d be perking,
While my tasks were busy working,
If I only had abort.

I could NEW to good effect,
without dealloc’d unchecked, sizing in ecstasy.

And my nerves would not be jangling,
when my pointers were left adangling,
If I only had GC.

I would meet every deadline, for each missile and each
mine,
By land and by the sea.
And my storage would be pooling,
While my tasks were busy dueling,
If I only had GC.

References

[Ada79] “Preliminary Ada Reference Manual.”ACM
Sigplan Not.14, 6 (June 1979), Part A.

[Ada83] Reference Manual for the Ada (R) Pro-
gramming Language. ANSI/MIL-STD-1815A-1983,
1983.

[Davis78] Davis, N.C. (US CIA), Goodman, S.E. “The
Soviet Bloc’s Unified System of Computers.”ACM
Computing Surveys10, 2 (June 1978), 93-122.

[Perry96] Perry, William. “Bueche Prize Acceptance
Address.” National Academy of Engineering, Wash.,
DC, 1996.

[STEELMAN78] DoD Requirements for High Order
Computer Programming Languages. June 1978.

[Whitaker93] Whitaker, W.A., Col. USAF. “Ada—The
Project: The DoD High Order Language Working
Group.”ACM Sigplan Not.28, 3 (March 1993), 299-
331.

Henry Baker has been diddling bits for 35 years, with
time off for good behavior at MIT and Symbolics. In
his spare time, he collects garbage and tilts at wind-
bags. This column appeared in ACM Sigplan Notices
32,4 (Apr 1997), 22-26.

26

