
SIGPLAN
ACM

Garbage In/Garbage Out

When Bad Programs Happen to Good People
Author: Henry G. Baker, http://home.pipeline.com/˜hbaker1/home.html; hbaker1@pipeline.com

Why do good researchers/mathematicians/professors
/students sometimes write bad programs? Why is it that
mathematicians, for whom simplicity and elegance of
presentation and proof is supreme, often consider rep-
resentations of algorithms in the form of programs as a
necessary evil, and don’t consider their presentation to be
worthy of elegance?

We might expect engineers to be less interested in
the readability and elegance of their computer code than
mathematicians, but we would be wrong. We might ex-
pect mathematicians will be more concerned with cor-
rectness of the overall algorithm and moderate effi-
ciency, while engineers will be more concerned with ‘bit-
twiddling,’ but instead we find outstanding mathemati-
cians like Knuth teaching EboMIX.

I can only conjecture about the reasons for this state of
affairs. The most innovative mathematicians seem happy
when a new result is satisfactorily proved, and leave it
to lesser lights to ‘clean up’ and simplify the proof for
future generations. Such tasks merely ‘make the obvious
trivial,’ and are not worthy of serious thought.

People of extremely high intelligence may have larger
short-term memories, enabling them to easily juggle
larger numbers of concepts simultaneously, and may
therefore see no need to simplify these concepts for the
merely mortal.

Researchers are usually in the position ofwriting code,
rather thanreading it, and therefore may not appreciate
the problems of reading another’s creation.

Professors often come from an earlier school before
significant thought had gone into the problem of writ-
ing readable and understandable code. Too early an ex-
posure to theBASIC language or to ‘machine language’
can cause irreversable brain damage. Sufferers are con-
stantly fighting the ‘ghosts’ of dead machines and com-
pilers; their programs show thick accents from the ‘old
country’ of dead computer languages.

Theory of computation people have trouble ‘step-
counting’ any language other than ‘machine language,’
even though Turing himself was fond of the lambda cal-
culus.

Editors and reviewers must also share in the blame for
bad programs that appear in published books and articles.

Perhaps those of us who care about quality programs
have not spoken up often enough—‘for bad programs
to triumph requires only that good programmers remain
silent.’ I call this passivity the ‘Silence of the Lambdas.’

We have found to our horror that computer programs
live on for decades, long after the machines and compilers
that caused their misshape have died. We thus live in the
purgatory created by our hackerish enthusiasm.

But the tight feedback mechanism between hard-
ware/compiler optimizations and the software ‘literature’
ensures that the poor programming styles of the past will
persist (because they are ‘efficient’ on machines opti-
mized for these poor programming styles) and will leave
little room for optimizing better styles.

We mustforce ourselves to break out of this cycle by
writing excellent programs, and then molding compilers
and machines to make these programs efficient, rather
than vice versa. Excellent programs do not happen by ac-
cident, but require very hard work. We must proactively
seek elegance, as elegance will not find us on its own.

What makes a bad program? Typically, it is substan-
tially longer than it needs to be, so that its sheer physical
size alone becomes intimidating. Corollaries include an
explosion of irrelevant and non-mnemonic names, and a
rat’s nest of boolean alternatives.

Definition 1 A bad program is one whose programming
style is so poor that its opacity forces the reader to rewrite
it from scratch, rather than going to the trouble to under-
stand it and/or debug it.1

Let’s look at a few code examples2 from published
books of excellent authors. I have the highest respect for
these authors, which is why it pains me so much to see

1Comments are useful adjuncts to a well-written program, butif they
arerequired to understand the program, then it is often a bad program
(or a bad programming language).

2We only have space here to discuss ‘small’ examples, inviting a
‘programming-in-the-small’ criticism. Most of my comments apply
also to ‘programming-in-the-large.’

27

SIGPLAN
ACM

Garbage In/Garbage Out
FUNCTION Euclid(a,b : INTEGER) : INTEGER;
{Computes GCD(a,b) with Euclid’s algorithm}
VAR m,n,r : INTEGER;
BEGIN m:=a; n:=b;

WHILE n <> 0 DO BEGIN r:=m MOD n; m:=n; n:=r END;
Euclid:=m

END {Euclid};

Figure 1: Riesel’sEuclid program (from [Riesel85], p. 242).

their bad programs as ‘inspiration’ to another generation
of computer scientists.

Hans Riesel, a pioneer in the use of computers for
number theoretic tasks, has an excellent book “Prime
Numbers and Computer Methods for Factorization,”
[Riesel85/94] now in its second edition. Figure 1 is his
programEuclid for Euclid’s greatest common divisor
(“gcd”) algorithm.

I would give Riesel’sEuclid program a grade of “B”,
because while it is not a truly bad program, it certainly
isn’t nearly as perspicuous as it should be for such a sim-
ple algorithm. Riesel takes a recursive algorithm and
casts it into an ‘iterative’ form. To his credit, he makes
use of the “structured” capabilities of Pascal for express-
ing this iteration. However, what could be more transpar-
ent than Wirth’s elegantgcd 3 from [Jensen74], in Figure
2?

FUNCTION gcd(m,n : INTEGER) : INTEGER;
BEGIN

IF n=0 THEN gcd:=abs(m)
ELSE gcd:=gcd(n,m MOD n)

END;

Figure 2: Wirth’sgcd program (from [Jensen74], p. 82).

Wirth’s gcd program is smaller, uses fewer names,
and is easier to understand because it is virtually iden-
tical to the list of mathematical rules for computing the
gcd function. It doesn’t clutter up the external names-
pace with extra names, and for ‘infinite precision’ inte-
gers (‘bignums’), any minimal overhead for the ‘recur-
sion’ itself will be swamped by the cost of computing
bignumMOD. If it weren’t for Pascal’s silly syntax for re-
turning values, it might also be moderately readable!4

3I have insertedabs() appropriately to produce a non-negative an-
swer. Unfortunately, Wirth’s later ‘extended’GCDprogram in the same
book—p. 157—is extraordinarily ugly.

4Although it is possible to write both good and bad programs inany

The usual whiners will complain that ‘recursion
is less efficient than iteration,’ because it requires
(among other things) the stacking/unstacking of
O(log(max(|m|, |n|))) stack frames. But since this gcd
algorithm is tail-recursive—meaning that the value of
the recursively-called subroutine is returned as the value
of the routine itself—no stack frames need to be stacked,
and this programis iterative. Compilers which can’t
compile this loop iteratively arebroken.

Figure 3 is another particularly bad example of a func-
tionJacobi from Riesel’s book which computes the ‘Ja-

cobi symbol’ function
(

m
p

)

, which tries to tell us when

a numberm is a quadratic residue modulo an odd prime
p. This function is used in the inner loop of a common
‘probabilistic’ primality test.5

This uglyJacobi program is perhaps 13 years old,6

but even when it was written, Dijkstra’s famous “Go To
Statement Considered Harmful” paper [Dijkstra68] was
already16 years old. If this program were submitted as
homework in a programming course today, I would hope
that it would get a very low grade.

Why does thisJacobi example cause me such an-
guish?

1. This example is from an extraordinarily bright per-
son with an excellent education (a computer pioneer) and
outstanding mathematical skills (a co-author with Erdös).

2. It shows that even16 yearsof well-funded scream-
ing by the best and brightest of computer scientists has
hadzeroimpact on the programming styles of those out-
side the narrow scope of ‘computer science’. One may

sufficiently powerful language, I donot claim that the choice of pro-
gramming language is irrelevant. For example, Pascal’s clumsy syntax,
poor operator precedence, and defective definitions of arithmetic primi-
tives make its programs needlessly hard to read and optimize.

5The Jacobi symbol function is discussed in exercise 4.5.4#23a of
[Knuth81].

6These two examples both appear unchanged in the (1994) edition
of Riesel’s book.

28

SIGPLAN
ACM

Garbage In/Garbage Out
FUNCTION Jacobi(d,n : INTEGER) : INTEGER;
{Computes Jacobi’s symbol (d/n) for odd n}
LABEL 1,2,3,4;
VAR d1,n1,i2,m,n8,u,z,u4 : INTEGER;
BEGIN

d1:=d; n1:=abs(n); m:=0; n8:=n1 MOD 8;
IF odd(n8+1) THEN

BEGIN writeln(tty,’n even in (d/n) is not allowed’);
GOTO 3 END;

IF d1<0 THEN
BEGIN d1:=-d1; IF (n8=3) OR (n8=7) THEN m:=m+1 END;

1: IF d1=0 THEN
BEGIN writeln(tty,’GCD(d,n)>1 in (d/n) not allowed’);

GOTO 3 END;
i2:=0;

2: u:=d1 DIV 2; IF d1=u * 2 THEN
BEGIN i2:=i2+1; d1:=u; GOTO 2 END;

IF odd(i2) THEN m:=m+(n8 * n8-1) DIV 8;
u4:=d1 MOD 4; m:=m+(n8-1) * (u4-1) DIV 4; z:=n1 MOD d1;
n1:=d1; d1:=z; n8:=n1 MOD 8; IF n1>1 THEN GOTO 1;
m:=m MOD 2; IF m=0 THEN Jacobi:=1 ELSE Jacobi:=-1;
GOTO 4;

3: Jacobi:=0;
4: END {Jacobi};

Figure 3: Riesel’sJacobi program (from [Riesel85], p. 286).

thus hire students that know programmingor math, but
rarely both.

3. There is no evidence that programming styles be-
ing used or taught today (1997) are any better (browse
the computer shelf of any Barnes & Noble, or worse, the
‘examples’ given in Microsoft Press books).

Although Riesel’sJacobi program’s most obvious
fault is its complete ignorance of looping constructs—one
of the major reasons for Pascal’s existence!—it cannot be
easily repaired withWHILE’s andREPEAT’s.

Rather than attempt to fix Riesel’s wirth-less pro-
gram by incremental improvements, let us rather derive
a program directly from the rules for the Jacobi symbol
[Riesel85/94] [Knuth81].

(

0
n

)

= 0, except
(

0
1

)

= 1
(

1
n

)

= 1
(

2
n

)

= (−1)(n
2
−1)/8

(

ab
n

)

=
(

a
n

)(

b
n

)

(

m
n

)

=
(

m mod n
n

)

(

m
n

)

= (−1)(m−1)(n−1)/4
(

n
m

)

, (m, n odd)

The plan of the computation for
(

m
n

)

is straight-
forward: recognize the boundary conditions and produce
correct answers for them, otherwise use recursion to re-
duce the complexity of the parameters.

The program in Figure 4 is straight-forward and works
very well,7 since it incorporates most of the optimizations
suggested by Riesel—e.g., only the low-order few bits of
m, n contribute to the decision regarding the sign of the re-
sult. The program isnot “tail-recursive”, though, because
it waits until the recursive calls return before inverting
them.

It is a pity that computing Jacobi’s symbol requires es-
sentially the same steps as computing the gcd, but the
standard Jacobi computation throws away the gcd in-
formation. We are thus led to a ‘Jcd ’ algorithm (Fig-
ure 5) that produces

(

m
n

)

when gcd(m, n) = 1 and
± gcd(m, n) otherwise. Jcd(m,n) costs no more to
compute thanJacobi(m,n) , and the Jacobi informa-
tion can be trivially recovered from theJcd(m,n) re-
sult.

7We ignorem < 0, since a non-recursive driver can trivially map
this case tom≥ 0 using the 5th rule above.

29

SIGPLAN
ACM

Garbage In/Garbage Out
FUNCTION Jacobi(m,n : INTEGER) : INTEGER;
{Computes Jacobi’s symbol (m/n) for m>=0, odd n>0.}

BEGIN
IF n=0 THEN Jacobi:=1
ELSE IF m=0 THEN Jacobi:=0
ELSE IF odd(m) THEN

IF (m MOD 4=3) AND (n MOD 4=3)
THEN Jacobi:=-Jacobi(n MOD m,m)
ELSE Jacobi:= Jacobi(n MOD m,m)

ELSE IF (n MOD 8=3) OR (n MOD 8=5) {Compiler does CSE, right?}
THEN Jacobi:=-Jacobi(m DIV 2,n)
ELSE Jacobi:= Jacobi(m DIV 2,n)

END {Jacobi};

Figure 4: New, improvedJacobi program.

FUNCTION Jcd(m,n : INTEGER) : INTEGER; {m>=0, odd n>0.}
BEGIN

IF m=0 THEN Jcd:=n
ELSE IF odd(m) THEN

IF (m MOD 4=3) AND (n MOD 4=3)
THEN Jcd:=-Jcd(n MOD m,m)
ELSE Jcd:= Jcd(n MOD m,m)

ELSE IF (n MOD 8=3) OR (n MOD 8=5)
THEN Jcd:=-Jcd(m DIV 2,n)
ELSE Jcd:= Jcd(m DIV 2,n)

END {Jcd};
FUNCTION Jacobi(m,n : INTEGER) : INTEGER; {odd n>0.}

BEGIN Jacobi:=1 DIV Jcd(n+(m MOD n),n) END;

Figure 5: Program to simultaneously compute gcd and Jacobi.

Now by mirroring the code, we can trivially make a
tail-recursiveJcd which keeps the sign of the result “in
the program counter” (Figure 6). A good compiler will
allocate only one stack frame for this function, and all
of the state will be kept in the registers and the program
counter. We can thus achieve transparency and efficiency
in the same program.

Since more efficient gcd and Jacobi algorithms are
known [Meyer96], this note is not intended to be the last
word on Jacobi algorithms, but an inspiration for how to
think about clear and elegant programming.

References

[Dijkstra68] Dijkstra, E.W. “Go To Statement Consid-
ered Harmful.”Comm. of the ACM11, 3 (March

1968), 147-148.

[Jensen74] Jensen, K., and Wirth, N.PASCAL User
Manual and Report, 2nd Ed.Springer-Verlag, New
York, 1974, ISBN 0-387-90144-2.

[Knuth81] Knuth, D.E.Seminumerical Algorithms, Sec-
ond Edition.Addison-Wesley, Reading, MA, 1981,
ISBN 0-201-03822-6. Problem 4.5.4#23a.

[Meyer96] Meyer, S.M., and Sorenson, J.P. “Efficient
Algorithms for Computing the Jacobi Symbol”. Co-
hen H. (ed.) Proc. ANTS-II, 2nd Intl. Symp. Alg.
Num. Th., Springer LNCS 1122, 1996, pp. 225-239,
http://www.butler.edu/˜sorenson/ .

[Riesel85/94] Riesel, Hans.Prime Numbers and Com-
puter Methods for Factorization.Birkhäuser, Boston,

30

SIGPLAN
ACM

Garbage In/Garbage Out
FUNCTION Jcd(m,n : INTEGER) : INTEGER; {m>=0, odd n>0.}

FUNCTION negJcd(m,n : INTEGER) : INTEGER; {m>=0, odd n>0.}
BEGIN

IF m=0 THEN negJcd:=-n
ELSE IF odd(m) THEN

IF (m MOD 4=3) AND (n MOD 4=3)
THEN negJcd:= Jcd(n MOD m,m)
ELSE negJcd:=negJcd(n MOD m,m)

ELSE IF (n MOD 8=3) OR (n MOD 8=5)
THEN negJcd:= Jcd(m DIV 2,n)
ELSE negJcd:=negJcd(m DIV 2,n)

END {negJcd};
BEGIN

IF m=0 THEN Jcd:=n
ELSE IF odd(m) THEN

IF (m MOD 4=3) AND (n MOD 4=3)
THEN Jcd:=negJcd(n MOD m,m)
ELSE Jcd:= Jcd(n MOD m,m)

ELSE IF (n MOD 8=3) OR (n MOD 8=5)
THEN Jcd:=negJcd(m DIV 2,n)
ELSE Jcd:= Jcd(m DIV 2,n)

END {Jcd};

Figure 6: Tail-recursiveJcd program.

1985, ISBN 0-8176-3291-3. Code is online at
ftp://ftp.nada.kth.se/Num/riesel-comp.tar .

Henry Baker has been diddling bits for 35 years, with
time off for good behavior at MIT and Symbolics. In
his spare time, he collects garbage and tilts at wind-
bags. This column appeared in ACM Sigplan Notices
32,3 (Mar 1997), 27-31.

31

