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Abstract. I show that the World Wide Web is a small world, in the
sense that sites are highly clustered yet the path length between them is
small. I also demonstrate the advantages of a search engine which makes
use of the fact that pages corresponding to a particular search query can
form small world networks. In a further application, the search engine
uses the small-worldness of its search results to measure the connected-
ness between communities on the Web.

1 Introduction

Graphs found in many biological and manmade systems are \small world" net-
works, which are highly clustered, but the minimum distance between any two
randomly chosen nodes in the graph is short. By comparison, random graphs are
not clustered and have short distances, while regular lattices tend to be clustered
and have long distances. Watts and Strogatz have demonstrated that a regular
lattice can be transformed into a small world network by making a small fraction
of the connections random [1].

Transitioning from a regular lattice to a small world topology can strongly
a�ect the properties of the graph. For example, a small fraction of random links
added to a regular lattice allows disease to spread much more rapidly across the
graph. An iterated mutliplayer prisoner's dilemma game is less likely to lead to
cooperation if the connections between the players form a small world network
rather than a regular lattice [1]. Costs for search problems such as graph coloring
have heavier tails for small world graphs as opposed to random graphs, calling
for di�erent solving strategies [2].

So far, several man made and naturally occurring networks have been identi-
�ed as small world graphs. The power grid of the western US, the collaboration
graph of �lm actors, and the neural network of the worm Caenorhabditis elegans,
the only completely mapped neural network, have all been shown to have small
world topologies. In the case of the graph of �lm actors, the distance between
any two actors is found as follows: if the two have acted together, their minimum
distance is one. If they have not costarred together, but have both costarred with
the same actor, their distance is two, etc.



The concept of small worlds �rst arose in the context of social networks
among people [3]. It has been estimated that no more than 10 or 12 links are
required to go from any person to any other person on the planet via the re-
lationship \knows," where \knows" could be de�ned as \can recognize and be
recognized by face and name." The fact that relationships between individuals
tend to form small world networks has been captured in several popular games.
For example, in the game 'Six Degrees of Kevin Bacon', one attempts to �nd the
shortest path from any actor to Kevin Bacon. Because the graph of �lm actors is
a small world, it is diÆcult to �nd any actor with a degree of separation greater
than 4 with actor Kevin Bacon. There is also the Erdos number for scientists. If
a scientist has published an article with the famous Hungarian mathematician
Erdos, their number is 1, if they've published with someone who's published
with Erdos, their number is 2.

In this paper I show that another man-made network, the World Wide Web,
has a small world topology as well. Web sites tend to be clustered, but at the
same time only a few links separate any one site from any other. This topology
has implications for the way users surf the Web and the ease with which they
gather information. The link structure additionally provides information about
the underlying relationship between people, their interests, and communities.

2 Finding Small World Properties in the Web

Watz and Strogatz de�ne the following properties of a small world graph:

1. The clustering coeÆcient C is much larger than that of a random graph with
the same number of vertices and average number of edges per vertex.

2. The characteristic path length L is almost as small as L for the corresponding
random graph.

C is de�ned as follows: If a vertex v has kv neighbors, then at most kv�(kv�1)
directed edges can exist between them. Let Cv denote the fraction of these
allowable edges that actually exist. Then C is the average over all v.

The �rst graph considered was the Web at the site level. Site A has a directed
edge to site B, if any of the pages within A point to any page within site B. The
data set used was extracted by Jim Pitkow at Xerox PARC from an Alexa crawl
made approximately 1 year ago. It contains 50 million pages and 259,794 sites.
Initially all links were considered to be undirected. From the 259,794 sites in the
data set, the leaf nodes were removed, leaving 153,127 sites. An estimate of L was
formed by averaging the paths in breadth �rst search trees over approximately
60,000 root nodes. 84.5% of the paths were realizable, the rest were labeled
with -1. The resulting histogram is shown in Fig. 1.

L was small, a mere 3.1 hops on average between any two connected sites.
C was 0.1078, compared to 2.3e-4 for a random graph with the same number of
nodes and edges.

Next, directed links were considered. This was a more natural interpretation
of navigation between sites, since a user cannot move in the reverse direction
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Fig. 1. Frequency of minimum path lengths between sites connected via undirected
links

on links using a standard browser. The largest strongly connected component
(SCC), i.e. the largest subset of nodes such that any node within it can be
reached from any other node following directed links, contained 64,826 sites. In
order to sample the distribution of distances between nodes, breadth �rst search
trees were formed from a fraction of the nodes. The corresponding histogram is
shown in Fig. 2.

L was slightly higher at 4.228 because the number of choices in paths is
reduced when edges are no longer bi-directional. C was 0.081 compared to 1.05e-
3 for a random graph with the same number of nodes and edges. In short,
even though sites are highly clustered locally, one can still hop among 65,000
sites following on average only 4.2 between-site links (note that there might be
additional hops within sites that are not counted in this framework). There is
indeed a small world network of sites.

In order to have a more accurate comparison between the small world net-
works for sites, and the corresponding random graphs, the subset of .edu sites was
considered. Because the .edu subset is signi�cantly smaller, distances between
every node could be computed. 3,456 of the 11,000 .edu sites formed the largest
SCC. C and L were computed for a generated random graph with the same
number of nodes and directed edges. A comparison between the distributions of
path lengths is shown in Fig. 3.

L for the .edu graph was 4.062, similar to that of sites overall. This was
remarkably close to L of the random graph : 4.048. At the same time C was
much higher : 0.156 vs. 0.0012 for the random graph. The semi log plot in Fig. 4
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Fig. 2. Frequency of minimum path lengths between sites connected via directed links

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7
x 10

6

number of links in shortest path

nu
m

be
r 

of
 s

ho
rt

es
t p

at
hs

.edu sites  
random graph

Fig. 3. Frequency of minimum path lengths between .edu sites compared to a random
graph with the same number of nodes and edges



shows the di�erence in the tails of the two shortest paths histograms. While L is
almost the same for both graphs, long paths (of up to 13) occur for the .edu site
graph. For the corresponding random graph the maximum path is 8 and long
paths are unlikely. While the average shortest path was almost identical, the
small world network distinguishes itself by having a few unusually longs paths
as well as a much larger clustering coeÆcient.
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Fig. 4. Semilog plot of the frequency of minimum path lengths within the .edu site
graph compared to a random graph with the same number of nodes and edges.

In summary, the largest SCCs of both sites in general and the subset of .edu
sites are small world networks with small average minimum distances.

3 A Smarter Search Engine Using Small World

Properties

3.1 Introduction

The above analysis showed that at the site level the Web exhibits structure while
staying interconnected. One would expect a similar behavior at the page level.
Related documents tend to link to one another while containing shortcut links
to documents with di�erent content. This small world link structure of pages
can be used to return more relevant documents to a query.

Links are interpreted as a citations of one document by another. Citations
have been used to evaluate the impact of journals and authors [9][10]. Here they



are used to identify quality web pages. Starting from the assumption that a
good Web document references other good documents of similar content, one
would expect that there exist groups of pages of similar content which refer to
one another. The quality of these pages is guaranteed by the recommendations
implicit in the links among them. Such groups can be extracted from results
matching a particular query. Within each group there are documents which are
good \centers", that is, the distance from them to any other document within
the group is on average a minimum. Centers tend to be index pages, and hence
constitute good starting points for exploration of related query results.

An application of these ideas was built around webbase, a repository of Web
pages crawled by Google (http://www.google.com) in the �rst half on 1998.
For any given search string, webbase returns queries ranked by a combination
of their text match score and their PageRank[11], which is based on the links to
the document. Webbase also provides link information for each page.

3.2 Outline of the Application

1. Query webbase for docids corresponding to a particular search string.
2. Identify all SCCs within the search results.
3. Identify the largest SCC.
4. Calculate L from each node in the largest SCC to �nd the best center.
5. Form a minimum spanning tree via breadth �rst search from the best center

(a graphical interface could guide the user down the tree).
6. Compute C for the largest SCC.

3.3 Observations

SCCs usually contain pages belonging to the same site, because pages within a
site are more likely to be linked to one another than pages across sites. A pref-
erence should be given to SCCs spanning the most sites, because links across
sites are stronger recommendations than links within a single site. SCCs con-
taining the same number of sites are ordered by the number of documents they
contain. A large number of interconnected documents implies a degree of orga-
nization and good coverage of the query terms. Rather than presenting a list of
documents that contains many sequential entries from the same site, the search
engine can present just the center from each SCC. By sorting the centers by
the size of their SCCs, one can present the user with the maximum span of the
search space with the minimum number of entries. Given a good starting point,
the users can explore the SCCs on their own.

Informal observation suggests that pages which do not belong to any large
SCC tend to focus on either a narrow topic, don't have many outlinks, or don't
have many pages referencing them (which implies that they are probably not
worth reading). When centers are sorted by the size of their SCCs, these docu-
ments will be listed last. One further observes that the SCCs that span several
sites tend to contain the main relevant pages, and are rich in \hubs", or pages
that contain links to many good pages. The algorithm will present these at the
top of the list.





Table 1. Top 10 centers for the LSCC for the search string "java"

Av. Min. Dist. URL & Title

2.47222 http://www.infospheres.caltech.edu/resources/java.html

Infospheres - Java Resources
2.48611 http://www.apl.jhu.edu/ hall/java/

Java Programming Resources: Java, Java and More Java.
2.70138 http://sunsite.unc.edu/javafaq/links.html

Java Links
2.73611 http://www.cat.syr.edu/3Si/Java/Links.html

3Si - Java Resources
2.77777 http://www.december.com/works/java/info.html

Presenting Java: Information Sources
2.79861 http://www.javaworld.com/javaworld/common/jw-jumps.html

JavaWorld - Java Jumps
2.93055 http://java.sun.com/aboutJava/jug/

Java(TM) User's Groups Info Page
3.01388 http://javaboutique.internet.com/javafaqs.html

The Java(TM) Boutique: Java FAQs
3.04166 http://sunsite.unc.edu/javafaq/

Cafe au Lait Java FAQs, News, and Resources
3.14583 http://java.sun.com/

The Source for Java(TM) Technology

Table 2. Top 10 attractors of the largest SCC for the search string "java"

Av.Min.Dist URL & Title

1.90972 http://java.sun.com/

The Source for Java(TM) Technology
2.29861 http://java.sun.com/products/

Products & APIs
2.3125 http://java.sun.com/applets/

Applets
2.33333 http://java.sun.com/nav/used/

Java(TM) Technology in the Real World
2.34722 http://java.sun.com/docs/

Documentation
2.35416 http://java.sun.com/nav/developer/

For Developers
2.53472 http://java.sun.com:81/

Java Home Page
2.63888 http://java.sun.com/sfaq/

Frequently Asked Questions
2.66666 http://java.sun.com/javaone/

JavaOne Home
2.74306 http://java.sun.com/products/activator/

Java Development



range of human interests. Some sites are devoted entirely to a single interest
or cause. Others, such as Yahoo, have clubs or chat rooms where people can
meet and share their ideas on particular topics. Many people document their
interests and aÆliations in their personal home pages. Therefore exploring the
link structure of documents which belong to a particular topic could reveal the
underlying relationship between people and organizations.

To see what insight one could gain from identifying strongly connected com-
ponents and average shortest paths, three search strings were issued to the search
engine application outlined above: \abortion - pro choice"1, \abortion - pro
life"2, and \UFO"3.

Although the pro choice results contained several sites devoted entirely to
the issue, such as www.choice.org, www.cais.com, www.abortion.com, and
www.prochoice.com, these sites did not appear to be linked to one another
(i.e. there was no strongly connected component containing pages from more
than one site). In fact, the largest strongly connected component was a group of
pro life pages which had mentioned "pro choice" in their content.

On the other hand, the pro life query results had a pro life strongly connected
component of 41 pages, which spanned 16 sites. One could conclude that pro lifers
not only have a stronger Web presence (804 vs. 645 documents returned for the
two queries), but that the pro life community is more tightly knit, and possibly
better organized.

The results of the UFO query contained a largest connected component of
95 pages, spanning 21 sites. Apparently there is a lot of interest in UFOs and
UFO enthusiasts are interested in other's sightings and speculations.

The largest strongly connected components for all three queries had a high
clustering coeÆcient and a small average shortest path, showing that groups
of people with common interests are linked to one another via a small world
network on the Web.

How does this tie into marketing? Suppose one were interested in informing
others of upcoming legislation regarding abortion. For example, a while back
one could have either opposed or supported the partial birth abortion ban bill
and wanted to start a red ribbon campaign. A ribbon placed on any site acts
as a link to the main campaign site. The main site provides information about
the campaign and allows others to download and include ribbons in their own
sites. One could place one red ribbon in support of the bill in the middle of the
pro life strongly connected sites and expect your ribbon to �nd its way to other
pro life sites. On the other hand, if one wanted to start a black ribbon campaign
in opposition to the bill, one would have to drop a black ribbon at several pro
choice sites, because one would not expect the ribbon to propagate on its own.
In general, one could reach a large community of people by placing an ad on a
central page of an SCC. If the community is represented on the Web by many

1 Data can be viewed at http://www.stanford.edu/~ladamic/data/pccenters.htm.
2 Data can be viewed at http://www.stanford.edu/~ladamic/data/plcenters.htm.
3 Data can be viewed at http://www.stanford.edu/~ladamic/data/ufocenters.htm.



small SCCs, the advertiser would need to place ads in many SCCs, in order to
ensure reaching as much of the target audience as possible.

5 Conclusions

I have shown that the largest strongly connected component of the graph of sites
on the Web is a small world. The graph of all sites and of the .edu subset has
an average minimum distance between nodes that is close to that of a random
graph with the same number of nodes and edges. At the same time both sets of
sites are highly clustered. These two properties make the Web a small world, at
least at the site level. I have developed a prototype of a search engine application
that can take advantage of the small world networks present in documents cor-
responding to particular queries. In the example of the "java" search string, the
application could present theuser with documents which are good starting points
for exploring, a maximum number of quality sites within a minimum distance
or it could cut to the chase and return the highest quality documents directly.
Finally, I have used the application to draw inferences about the connectedness
of several communities of people that are represented on the Web and how it
could in
uence advertising strategy.
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