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Abstract

We present a new multiagent model for the multi-period portfolio selection problem. Individual
agents receive a share of initial wealth, and follow an investment strategy that adjusts their portfolio
as they observe movements of the market over time. The agents share their wealth at the end
of the final investment period. We show that a multiagent system can outperform a single agent
that invests all the wealth in a simple stochastic market environment. Furthermore, a cooperative
multiagent system, with a simple communication mechanism of explicit hint exchange, achieves
a further increase in performance. Finally we show that communication is redundant in a more
realistic market that satisfies the constraints between volatility and return implied by the Capital

Asset Pricing Model.

1 Introduction

Portfolios are an effective way of increasing returns while decreasing risk when investing in the stock
market (28). For this reason there has been considerable attention to portfolio selection strategies in
the financial (8; 12) and statistics literature (32; 10; 2; 11). As a general model for the decision faced
by a computational agent with limited resources that acts in an uncertain environment, portfolio-
selection techniques have recently been applied to new problem domains: the selection of portfolios of
heuristics for solving hard computational problems (17); and portfolio strategies for message passing
to reduce risk in uncertain communication domains (27).

We introduce a new multiagent model for portfolio selection that builds on a recent
computationally-efficient portfolio selection strategy with a worst-case performance guarantee
(15). The multiagent model assumes a system of bounded-rational cooperative computational
agents that pool their initial wealth, manage a share of the investment each, and then pool
their final wealth. The agents use a myopic strategy to change their portfolio between invest-
ment periods, based on the current market prices and their current portfolio. We later al-
low the agents to communicate through the exchange of the recent performance of their port-
folio selection strategies. An agent can switch to the portfolio strategy of the agent that has
been performing best in the recent past. This simple mechanism of “hint exchange” has en-
abled exponential performance improvements in other cooperative problem solving domains (18;
9).

We derive a new interpretation of the multi-period portfolio selection problem as search through
portfolio space, where an agent explores a new state in each investment period. We present the
results of a quantitative assessment of the performance of our multiagent portfolio selection model
in a simple stochastic market that show that: (a) a system of independent agents will outperform
a single agent; (b) a system of agents can further improve their performance by sharing short-term



portfolio strategies. This confirms that cooperative multiagent search improves portfolio selection
through efficient search. Finally, we show that communication through hint exchange is redundant
in stochastic markets that satisfy the Capital Asset Pricing Model (CAPM). This model places
constraints on the volatility of stock dynamics, imposing correlations between the price movements
of individual stocks. The CAPM model is a more realistic market model, and this result suggests
that communication is the mechanism that leads to the observed dynamics and efficiencies in real
markets.

2 Multi-Period Portfolio Selection

In this section we introduce a formal model of the portfolio selection problem in a stochastic stock
market. Given this model, the traditional economic approach to portfolio selection selects optimal
portfolios over time through direct optimization, while modern portfolio theory suggests a single-
period mean-variance approximation. In both of these approaches strong assumptions are made
about the underlying statistics of the market. The portfolio selection strategy that is implemented
by the individual agents in our multiagent model is model-free, and its performance is robust to
specific assumptions about the statistics of a market.

A portfolio in a market of NV stocks in a single investment period is represented as a vector
w = (w1, ..., wn), where w; > 0 and Zfil w; = 1. A fraction w; of wealth is invested in stock ¢ at
the start of the period. The total change in wealth over the period depends on the change in price
of the stocks held in the portfolio. Given a vector of “price relatives”, x = (z1,...,zn), where z; is
ratio of closing price to opening price over the period for stock i, then the wealth of an agent with
portfolio w increases (or decreases) by a factor of w-x = Zfil w;x;. This is the simple gross return
from portfolio w. The standard multi-period portfolio selection problem is chooses a sequence of
portfolios {wT} = (w!,...,wT) to maximize the expected utility over return on investment, given
a sequence of price relatives sampled from a stationary distribution, {x’} = (x!,...,xT). The
return on investment, Rs from portfolio selection strategy S, after T' periods is Rs = Hthl wh - xt,
where w’ denotes the investment portfolio in period ¢. A portfolio selection strategy maps a history
of stock price observations to a portfolio selection for the next investment period. Given a utility
function U(R) over end-period return on investment, the traditional economic approach to multi-
period portfolio selection is to follow a strategy that generates a sequence of portfolios {w’} to

solve
T
U (H w! -xt>] (1)

The optimal portfolio strategy will depend on the risk-preferences of the investor. Typically
investors are risk-averse, with concave increasing utility functions over final wealth (7). A good
investment strategy makes a tradeoff between expected final-period wealth and variance in final-
period wealth to maximize expected utility. Non-linear programming techniques can be used to
solve this optimization problem for a restricted class of utility functions, given a statistical model
for the future dynamics of the stock market (3).

Modern portfolio theory introduces approximate “mean-variance” analysis to simplify the
portfolio selection problem (28). The “risk” of a portfolio is quantified as the standard devi-
ation of return from period to period, and the portfolio selection problem is reduced to com-
puting an “efficient” portfolio that minimizes risk for a fixed level of return, in a single pe-
riod. While this approach is mathematically and computationally tractable, it still requires
that an investor first estimates model parameters that characterize the dynamics of the stock
market, and then computes the optimal portfolio selection strategy given the model. The ac-
curacy of the underlying stock-market model and statistics are critical. For example, while a
portfolio may be efficient with respect to a particular set of beliefs about the future dynam-
ics of stock prices, its ex post efficiency is highly dependent on the accuracy of those beliefs.
The parameter estimation problem for an economic random-variable is difficult in general (7;
8).

max Erxr
(wT} {XT}







long-term optimal CRP is ill-defined, and (assuming periodic quasi-stationarity) it is again the speed
of convergence, to the short-term optimal CRP, that is important.

We conjectured that through (a) parallel agent search; and (b) promoting cooperative search
through hint exchange, the agents in our multiagent investment model would converge to the optimal
portfolio more quickly than either a single agent, or a system of independent agents. This collective
search mechanism has been an extremely successful strategy in other hard problem solving domains
(9). Viewed as search, the performance of a portfolio selection strategy depends on the utility of the
sequence of states explored during the first 7" iterations. The particular market model determines the
utility-structure of the search space, and the distribution of input problems. Some market models
can be expected to present more difficult search problems than other market models.

We present quantitative results for a medium-term multi-period investment problem in a simu-
lated market with stationary statistics. We measure the performance Perfg, of a portfolio selection
strategy S after T' investment periods as the end-period log return on investment, averaged over J
trials:

Perfs = =3 log (Rs(j) (3)
J

where Rs(j) is the return from strategy S in the j** trial. We also compute the optimal CRP
for the simulated markets, that is the constant rebalanced portfolio that maximizes performance for
a large number of trials given knowledge of the statistics of the market.

3 Cooperative Multiagent Search for Portfolio Selection

In this section we present the results of a quantitative analysis that compares, for a simple stock
market model, the performance of a system of non-adaptive, adaptive, and adaptive and communi-
cating agents as the number of agents in the model increases. The non-adaptive agents maintain the
same (random) constant-portfolio across all investment periods, trading to rebalance the portfolio
from period to period. The adaptive agents receive a random initial portfolio and invest from period
to period according to the x? portfolio selection strategy. The communicating adaptive agents also
exchange portfolio strategies and can switch to the portfolio strategy of another agent. The agents
post their current strategy and its recent performance to a central “blackboard”, which is read by
all agents. Recent performance is measured as the return on investment achieved with the portfolio
selection strategy over the past 7 investment periods, termed the “performance-window”. An agent
will choose to switch to the portfolio strategy of the agent with the best recent performance with
fixed probability p, termed the “switching probability”. The cooperation parameters for each agent
are drawn from a distribution that is optimized off-line for the market volatility, the size of the
multiagent system, and the number of investment periods (see Section 3.2).

An agent that switches to the current portfolio of another agent in the system will approximate
the strategy of that agent because the agents all use the same history-free x? update-rule (with
different learning rates) to adjust the portfolio on the basis of current prices. We do not limit the
number of times that an agent can change strategies, other than forcing an agent to use a new
strategy for at least T investment periods before posting to the blackboard or switching to another
strategy. We conjectured that this exchange of recently successful strategies and random switching
between strategies would cause the overall portfolio selection strategy of the multiagent system to
move more quickly (on average) than a single agent towards an optimal strategy. The model shows
how a group of investors might behave in a complex and uncertain environment?.

3.1 Quantitative Results

We initially simulated a market of N geometric Brownian motion stocks with normally distributed
price relatives, x = (x1,...,zy). The first and second moments of the distribution for each stock,
X; ~ N(u;,0?), are represented by the vectors u = (u1,...,un), and 0 = (01, ..., 0nN) respectively.

20f course, there is nothing to prevent one agent modeling a cooperative multiagent system internally
for a small and completely observable market space.
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Figure 1: The performance of the non-adaptive, adaptive non-communicating, and adap-
tive and communicating agents as a function of the number of agents in the mutliagent
portfolio selection system.

Geometric Brownian motion is often used to model the dynamics of stock prices (13). It satisfies
the “Efficient Market Hypothesis” (EMH), which holds that an informationally efficient market
has random price changes, and denies the possibility of “beating the market” (8). The probability
distribution in geometric Brownian motion over all future prices depends only on the current price
relatives, and therefore the history of past price changes carry no future predictive value.

We simulate a market of 10 stocks, over 2000 investment periods. In order to assure the statis-
tical significance of our results we averaged the performance of each multiagent portfolio selection
model over 2000 independent market trials. The stochastic parameters for each trial are drawn from
uniform distributions, p; ~ U(0.9995,1.01), and o; ~ U(0.0,0.2). These statistics are appropriate
for the monthly returns on real stocks. For example, the mean monthly return on stock in IBM
between 1962 and 1994 was 1.0081, and the standard deviation in monthly return was 0.062 (8,
Page 21). In each trial we first generate the stochastic parameters, and then the stock prices. The
investment models are all compared on the same sequences of stock prices.

The number of agents in our model varies between 1 and 800, with the same initial wealth
shared equally among all agents for all models and trials. We assign a random initial portfolio to
each agent, and allow each adaptive agent to use a different learning rate, n ~ U(0.1,0.15). This
distribution of learning rates was found experimentally to give good performance for a wide range of
multiagent model sizes, and helps to maintain a diversity of strategies within the system. In general
the choice of learning-rate represents a classic tradeoff between return and risk. A high learning rate
enables adaptive agents to perform well on average, but with a high chance of performing worse than
non-adaptive agents (see Section 3.2). The switching rate and performance window size are the same
for every agent within a system, and optimized for the number of agents, with switching-probability
p = 0.004 and performance-window 7 = 400 typical.

The performance of each model is compared in Figure 1. We see that: (a) a single adaptive agent
outperforms a single non-adaptive agent; (b) a system of independent adaptive agents outperforms
a single adaptive agent; (c) a system of adaptive communicating agents outperforms a system of
adaptive non-communicating agents for large numbers of agents. We also compute the performance
of an agent that invests in the long-term optimal constant rebalanced portfolio across all trials.
This optimal strategy (which requires knowledge of the statistics of the market) yields an average
end-period log wealth, Perf,. = 16.0.

The value of communication within our multiagent model for portfolio selection increases with
the number of agents in the system. The difference in performance between the cooperative and



independent models is significant for systems with more than 50 agents®. This confirms that coop-
erative parallel agent search for the optimal portfolio selection strategy is more efficient than single
agent search or independent parallel search in a simple stochastic market.

Final Wealth
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Figure 2: Final system wealth (log-scale) of 100 adaptive agents (dots) and 100 non-
adaptive agents (line), over 2000 trials. The trials are sorted by final wealth of the non-
adaptive agents.

Figure 2 compares the final system wealth of 100 adaptive agents (dots) and 100 non-adaptive
agents (line) in 2000 market trials. The trials are sorted by the final wealth of the non-adaptive
system of agents. The adaptive agents clearly outperform the non-adaptive agents: achieving more
wealth in 93% of the trials, and a final wealth that is 4.3 times greater on average. Figure 6(a)
illustrates the additional value of communication for a system with 400 adaptive agents. The com-
municating agents outperform the non-communicating agents, achieving a greater wealth in 75% of
the trials, with a wealth that is 1.47 times greater on average.

The slow improvement in performance for the system of non-adaptive agents as the number
of agents increases shows the effect of simple diversification. Each agent invests in a new random
constant portfolio strategy. Theoretically, as the number of non-adaptive agents gets very large the
performance will approximate the worst-case optimal performance of a single adaptive agent, but
the number of agents required is very large — estimated to be at least 10° for 10 stocks (15).

3.2 The Choice of Model Parameters

The choice of learning rate, 7, for the adaptive agents represents a classic tradeoff between return
and risk. When choosing a learning rate the appropriate measure of risk is the chance that an
agent might perform worse than with no adaptive behavior at all. As the learning rate is increased,
performance increases but so does risk. As a graphical illustration of the effect of learning rate on
risk and performance, consider Figure 3, which compares the final system wealth of 100 adaptive
agents (dots) with 100 non-adaptive agents (line), for a high learning rate, n € [0.9,0.95]. Figure 2
plots the same results for agents with a smaller learning rate, n € [0.1,0.15]. Visually the “dots”
(adaptive) beat the “line” (non-adaptive) by a larger margin in Figure 3, but also fall below the line
more frequently, and by more. The adaptive multiagent system with high learning rates achieves
a wealth that is on average 26 times greater than that of a system of non-adaptive agents, but
performs more than 80% worse in 16.5% of the trials (high performance, high risk). In comparison,
the multiagent system with low learning rates outperforms a non-adaptive multiagent system by an

3The null hypothesis that the mean end period log wealth for a system of communicating agents and a
system of independent agents is equal is rejected with a significance level of less that 0.01 for systems with
more than 50 agents.






market model, is around p = 0.008 and 7 = 500. We can see that the performance drops off
when the window size is too large, in this case there is little strategy switching and the system
performance is similar to a system of independent agents. Similarly, when the window size is too
small and the switching probability is too large, we have too much switching, too early, and we
lose the advantages that come from having agents with diverse strategies. The multiagent system
simulates the performance of a single agent. We optimized the cooperation parameters off-line for
each number of agents, to maximize any benefit from cooperation. The optimal parameters for other
multiagent system sizes are similar, with a trend to larger switching probabilities as the number of
agents increases.

4 Portfolio Selection in CAPM Markets

In this section we present the results of a quantitative analysis that compares the performance of
adaptive multiagent systems with and without communication in a more realistic market model. We
simulate the Capital Asset Pricing Model (CAPM), which models an equilibrium for mean-variance
investors with homogeneous beliefs (35; 8). Although there is some empirical evidence against CAPM
the CAPM does explain a significant fraction of the price dynamics observed in real stock markets (4;
29). The dynamics of stocks in real markets are in fact highly, but not perfectly, correlated. It is
this partial correlation that allows diversification through portfolio investments to reduce, but not
eliminate, risk (7; 35).

The CAPM augments the simple geometric Brownian motion model with quantified correlations
between stock prices. The key result of CAPM is that the expected excess return of a stock is
proportional to the covariance of its return with the “market portfolio”. The market portfolio is
simply the result of a “buy and hold” policy that invests equally in all stocks (14). In equilibrium,
stocks with high expected returns have high volatility, while stocks with low expected returns have
low volatility.
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Figure 5: The performance of the non-adaptive, adaptive non-communicating, and adap-
tive and communicating agents as a function of the number of agents, in a CAPM market.

To simulate a CAPM for N stocks and T investment periods we generate means and variances
for the marginal Normal distributions for the price relatives of each stock from the same distribution
as in the simple market model*. We then assign covariances to satisfy constraints between the
volatility and return of stocks, and complete a multivariate Normal distribution that generates a
sequence of stock prices with statistics that fall approximately onto the “security market line” (35),
such that the excess return of each stock is proportional to its covariance with the market portfolio.

“We choose not to include a risk-free asset in our model of CAPM. We justify this by assuming that the
simulated returns on stocks are already “excess-returns” over the risk-free return.






between investor actions and price dynamics to predict equilibrium statistics, that makes further
communication worthless.
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Figure 7: Expected return versus variance in return for the Market portfolio, and various
sizes of systems of non-adaptive agents, adaptive agents, and adaptive and communicating
agents. All adaptive portfolio selection-strategies, and the market portfolio, lie on the
same line in mean-variance space.

Finally, we compare the performance of our multiagent model to the performance of the mar-
ket portfolio. In a market that satisfies CAPM, such as the second set of simulated markets, all
adequately diversified portfolios, including the market portfolio, will have the same “Sharpe ratio”,
ratio of excess expected return to variance in return (35). Figure 7 shows that this is the case, the
overall portfolios of the multiagent portfolio investment systems and the market portfolio all plot
along the same line in mean-variance space. Only the non-adaptive agents are less mean-variance
efficient than the market, due to a lack of diversification.

However, the independent multiagent model outperforms the market in terms of expected util-
ity for an investor with a logarithmic utility function over final wealth. Figure 8 compares the
distribution of the logarithm of final wealth for the market portfolio and a system of 400 adaptive
agents. We see that the multiagent system of independent agents is able to significantly outperform
the market portfolio, achieving a mean log-wealth of 8.19, while the market only achieves a mean
log-wealth of 5.31, despite being mean-variance efficient. Indeed, the buy and hold strategy of the
market portfolio performs worse than the average performance of a single investor with a random
constant rebalanced portfolio (see Figure 5).

Modern portfolio theory reduces portfolio selection to the set of portfolios that lie on the “effi-
cient frontier” in mean-variance space, but provides no insight into how to select between efficient
portfolios. All the adaptive portfolio strategies, and the market portfolio, lie on the efficient frontier

Table 1: Relative performance over 2000 trials in the standard market model and the
CAPM market model, for multiagent systems with 800 agents.

Market Model Investment Model
Non- Adaptive Communicating
adaptive agents and adaptive
agents agents

Simple 55% 64% 67%

CAPM 59% 67% 67%
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Figure 8: Distribution of final log wealth of the market portfolio and a system of 400
adaptive agents in a simulated CAPM market.

in Figure 7. Although we can expect the performance of the market portfolio to improve through
borrowing (or lending) a risk-free asset to move the overall portfolio statistics on the efficient frontier,
the relatively poor performance of the market portfolio is also explained by a closer inspection of the
distributional properties of the final wealth from the market portfolio and the multiagent portfolio
selection models.

Table 2: Correlation of final wealth with the best CRP wealth over 2000 trials in a
simulated CAPM market, for multiagent systems with 800 agents.

Investment Model

Market  Non- Adaptive Communicating
Portfolio adaptive agents and adaptive
agents agents

0.1281 0.6872 0.9988 0.9956

The ratio of the first two moments of a distribution is not a sufficient statistic with which to
compare the expected log of a distribution. There are other important distributional differences,
and we get some insight by comparing the correlation of final wealth with the end-period wealth
of the best CRP in each trial across portfolio selection strategies. Table 2 shows that while the
performance of the market portfolio remains almost uncorrelated with the best CRP across multiple
trials, the adaptive agents are able to achieve a wealth that is almost perfectly correlated with the
wealth of the best CRP strategy. The agents are able to “boost” the performance at the tail of the
wealth distribution by tracking the best possible gain that they can achieve very closely.

5 Related Work

To the best of our knowledge this is the first work to consider the performance of a system of multiple
adaptive agents for the portfolio-selection problem. Blum and Kalai (5) recognize that a system of
non-adaptive agents will approximate the worst-case optimal performance of a single EG-adaptive
agent as the number of agents gets large, but do not consider either an adaptive multiagent system,
or the effects of cooperation.

There has been previous work on using multiple heuristics to solve search problems: sequential
methods with possible restart (33; 26; 19; 6); parallel independent methods (31; 25; 20; 23; 17); and
cooperative parallel multiagent search (22; 1; 16; 9). A general theory predicts superlinear speedup
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in the performance of individual agents when the search methods are diverse and the agents are able
to utilize information found in other parts of the search space (18).

6 Conclusions and Future Work

In this paper we have introduced a new multiagent model for portfolio selection that mixes parallel
search with hint exchange. The model assumes a system of bounded rational cooperative agents that
pool their initial wealth, each manage a share, and then pool their final wealth. The quantitative
results show that a system of adaptive agents with simple update-rules, that start with random
portfolios and exchange portfolio strategies with good recent performance, will outperform a single
adaptive agent in a simple market model with no global structure relating the expected return and
volatility of each stock.

These results are also applicable to economic approaches to hard computational problems, where
it has been shown that a suitable portfolio of heuristics can improve the performance of programs
for solving very hard problems (17). If individual processes choosing among possible heuristics
are allowed to communicate, the final portfolio to which they converge will have the same optimal
characteristics as the one we considered in this paper.

When the market statistics have more structure, such as in the CAPM market, an adaptive
multiagent system will still outperform a system of non-adaptive agents or a single adaptive agent.
However, communication between the agents becomes redundant, and cooperating agents do no
better than independent agents. Finally, we showed that while the “market portfolio” that invests
across all stocks equally will achieve an optimal ratio of expected wealth to variance in wealth,
its performance in terms of expected end-period log wealth is worse than that of our multiagent
portfolio selection model. The end-period wealth from the independent multiagent cooperative
selection models is highly correlated with end-period wealth of the best CRP, and we believe that
this favorably skews the distribution of end-period wealth.

In future work we will investigate how the performance of our cooperative multiagent portfolio
selection model scales with the number of stocks in the market space. We also propose further
analysis of the micro- and macro-properties of the search algorithm that is implemented by the
multiagent portfolio selection model, focusing at the micro-level at the occurrence and frequency
of strategy switching between the agents, and at the macro-level on the efficiency of the search
algorithm through aggregate portfolio space.

7 Appendix

In this appendix we prove a number of optimality properties for the constant rebalanced portfolio
(CRP) that optimizes asymptotic per-period return in a stationary stochastic market:

- 1T
* . —
w" = argmax TlgnOO (tl_[lw x ) 4)

where, w = (wi,...,wy) represents a constant rebalanced portfolio across N stocks, with
investment w; maintained in stock i across all investment periods, w; > 0, > yw; = 1; x* =
(zt,...,z%) represents the price relatives in period ¢, z! is the ratio of closing price to opening price
of stock ¢ in period t, i.i.d. across periods; T is the number of investment periods.

Claim 1. The best CRP, w*, also mazimizes expected single period log return.
Proof.

T /T
* : t
w" = argmax lim IIw-x
w  T—oo



= argmax | hm ( Zlogw x>

= argmax Exlogw - x a
w
Claim 2. The CRP that maximizes expected single period log return also maximizes expected end

period log return, asymptotically for large numbers of investment periods.
Proof.

T
* : t
wh = argmax Tlgr(l)o (E{XT} logtl:[1 W - X )

t=1

T
= argmax | hm (ZExlogw x)

= argmax FEx logw - x a

T
— t
= argmax Tlgnoo (E{XT} Zlogw X >

Claim 3. The CRP that maximizes expected single period log return also maximizes expected end
period log return for any number of investment periods.
Proof.

T
w* = argmaxE{XT}logHw-xt

T
= argmax Eyxr) Z logw - x*
t=1

= argmaxZEX logw - x
t=1
= argmax Exlogw - x |

Claim 4. Any portfolio selection strategy S that converges to the best CRP in a finite number of
investment periods will achieve an optimal per-period growth rate asymptotically, as the number of
investment periods gets large.

Proof. We prove (equivalently, from Claim 1) that the average per-period log return from
strategy S approaches the optimal expected per-period log return as the number of investment
periods, T, gets large. Let T} represent the number of periods that pass before strategy S selects
the optimal CRP, w*; u; denote the average per-period log return received during those periods;
and p* denote the expected per-period log return from w*. Then the average per-period log return
from strategy S as the number of investment periods gets large is

lim —Zlogws x!

.1 .
= Jim = (Tup + (T ST1)u%)

*

= U O
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