
ABSTRACT
Most document or information management systems rely on
hierarchies to organise documents (e.g. files, email messages
or web bookmarks). However, the rigid structures of hierar-
chical schemes do not mesh well with the more fluid nature
of everyday document practices. This paper describes
Presto, a prototype system that allows users to organise their
documents entirely in terms of the properties those docu-
ments hold for users. Properties provide a uniform
mechanism for managing, coding, searching, retrieving and
interacting with documents. We concentrate in particular on
the challenges that property-based approaches present and
the architecture we have developed to tackle them.

Keywords
Document management, document properties, document
interfaces, interaction models.

INTRODUCTION
Much of the time we spend interacting with computer sys-
tems is devoted to working with documents: text documents,
spreadsheet documents, presentation documents, Web docu-
ments, email documents, and so forth. In turn, most of the
electronic documents that we work with are stored in hierar-
chies. Filesystems, for example, present a hierarchical model
of directories and subdirectories, while email systems
present a hierarchical model of folders and subfolders. The
hierarchy is the principal structure that users are offered for
information management.

However, although hierarchies are a computationally conve-
nient means to organise large amounts of data, they are often
too rigid for everyday document management practices. The
problems with hierarchies are borne out by studies of elec-
tronic file management. For example, Barreau and Nardi [2]
looked at how people managed files on personal computers,
and found that people displayed a considerable preference
for spatial organisation and informal grouping, rather than
the structure offered by hierarchical filing; the hierarchies
they observed tended to be very broad and shallow, with
little or no cross-linking. In many ways, this echoes the expe-

riences reported by Marshall and Rogers [12] exploring the
use of structured hypertext systems, who also found that the
rigid structures they offered were poorly suited to the more
fluid and informal ways in which people organised
information.

Our work explores opportunities for moving away from this
rigid approach. This paper describes ongoing research we are
conducting into a new approach to document management
that aims to provide users with new ways of organising,
structuring, managing and interacting with document collec-
tions, while none the less retaining the level of integration
with file-based platforms that we all need to work in our
everyday computational environments.

Placeless Documents
The work reported here has been carried out under the aus-
pices of a project called “Placeless Documents”. The starting
point for the Placeless Documents project is that conven-
tional approaches put the emphasis on the wrong place, by
forcing people to think not in terms of what a document is,
but rather where it is stored.

Filesystems, for example, exhibit this focus on document
locations rather than on the documents themselves. The path
“T:\dourish\papers\presto\uist99\draft.doc” names a place in
the filesystem and only incidentally the file that might be
stored there. One way to see that this names a place and not
a file is that there may not be such a file at all, but the system
clearly knows where to look to determine whether or not
there is.

For us, the particularly interesting thing about filenames
such as these is the way we use them to encode information
that is relevant to us about the documents they locate. Each
of the elements of the path indicates something about the
document – that it belongs to the user “dourish”, that it’s a
paper, that it’s about the Presto project, that it’s for UIST’99,
that it’s a draft, and that it’s a Microsoft Word file (the “.doc”
extension). In fact, even the fact that it’s stored on the “T:”
drive is significant; in the PARC environment, the “T:” drive
is a network file system that is regularly backed up; so if the
document is stored there, rather than on the un-archived “C:”
drive, then the author must feel that it is important enough to
warrant backing it up.

In other words, documents and document collections have a
variety of properties, relevant to document users. In the

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to repub-
lish, to post on servers or to redistribute to lists requires prior permission and/
or a fee.
UIST’99. Copyright ACM 1999.

Using Properties for Uniform Interaction
in the Presto Document System

Paul Dourish, W. Keith Edwards, Anthony LaMarca and Michael Salisbury

Computer Science Laboratory
Xerox Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto CA 94304 USA

{dourish,kedwards,lamarca,salisbury}@parc.xerox.com

Placeless Documents project, it is not locations but proper-
ties that play the central role in our designs.

We envision a system in which users can manipulate and
exploit document properties directly. We make a strong sep-
aration between document content (the bits that make up the
document itself), document properties (elements that users
associate with the document), and document storage (an
external repository where the content resides).

This approach offers a number of benefits:
1. Document properties are directly associated with docu-

ments, rather than with document storage locations. This
means that documents will retain properties even when
moved from one place to another, and that property
assignment can have a fine granularity.

2. A document can have any number of properties associ-
ated with it, and these properties are unordered. Docu-
ments can be organised without the limitations of
hierarchies (“should I create a ‘Presto’ sub-folder in my
‘papers’ folder, or a ‘papers’ sub-folder in my ‘Presto’
folder?”)

3. Properties can be specific to individual document con-
sumers. When you interact with a document in terms of
its properties, those could be properties relevant for you
rather than for the original author of the document.

Our vision is of a system that allows users to organise their
documents according to the properties of those documents.
Document properties are “things you already know about
your documents”; they directly relate documents to their use.
Properties can manage document interactions not simply in
the filesystem, but in any document application.

This paper discusses recent research we have been conduct-
ing into these issues. We introduce and outline our approach,
and describe Presto, an early embodiment of these ideas that
we have been exploring. In particular, our focus in this paper
is on the challenges that property-based interaction presents,
and the approaches we have taken to meet them. We will
begin by describing the basic elements of our approach, the
design of Presto. We will then consider the interactions
Presto supports with other system components, and with
users, before discussing some early uses of Presto supporting
other projects at PARC, and the lessons we have learned.

DOCUMENT PROPERTIES
If our goal is to provide a document system organised around
document properties, then it seems reasonable to ask, what
are document properties, and where do they come from?

In Presto, properties are name/value pairs. For instance,
“author=kedwards” is a property whose name is “author”
and value is “kedwards.” Any number of document features
could be expressed through name/value pairs. Values can be
arbitrary objects. Of course, existing systems already pro-
vide some notion of document properties which might
operate in this way, such as the document length or author,
the last modified time or the storage format. In our work, we
want to generalise this restricted notion of properties, and
allow users to express arbitrary features of the document that
are uniquely relevant to them.

Although properties are designed to be meaningful to users,
they can also be exploited by system components. For
instance, a property that indicates that a document is impor-
tant might signal to a backup service that this document is a
candidate for off-line storage. Similarly, a property that indi-
cates that a document is currently being worked on might
signal to a replication service that an up-to-date copy should
be kept on my laptop so I can work on it when I take a trip.
In other words, properties can act as a point of coordination
between the user level and the system level. The primary
level of interaction, however, is the user level.

We can take this approach to user/system interaction one
stage further. Since our systems may exploit document prop-
erties as configuration mechanisms, they should also be able
to use document properties as a way of recording their own
processing on documents. So, any application that wants to
store data associated with a document can store it as a prop-
erty attached to that document.1 In this way, information
which would otherwise be locked inside specific applica-
tions can be reflected in the same space as all other relevant
document information. In turn, this makes all document
information viewable, browsable and searchable through a
uniform property-based mechanism and a single property
space.

Properties for Document Consumers
We have already made the observation that document prop-
erties are oriented towards the document consumer, rather
than the document creator or author. However, most docu-
ments have more users than creators, and clearly those users
may have different relationships to the document. This
implies that different users may want to attach different
properties to a document.

1. Although we will typically use text string values in our exam-
ples, property values in Presto can be arbitrary data objects, so
applications can store structured data, links to other documents, or
even runnable code in document properties.

author = dourish

t:\dourish\papers\presto\uist99\draft.doc

format = MS Word
conference = uist

topic = presto

status = draft

backup = truetype = paper

FIGURE 1: In our systems, documents are organised accord-
ing to their properties, rather than according to their locations.

Our document model supports the idea of “document refer-
ences,” which appear as normal documents in our system,
but actually refer to documents stored elsewhere, and under
the control of some other user. Each document reference
encapsulates its own set of properties, as shown in figure 2.
In this example, Paul has created a document (called the
“base document”), to which are attached a set of properties.
Two other users, Mike and Anthony, have document refer-
ences, which appear to them like documents, but which are
actually pointers to Paul’s base document. Mike and
Anthony have their own properties associated with the doc-
ument; but these are private to them, and do not interfere
with each other. Mike may have marked the document as
“interesting”, while Anthony has marked it as “prior work”
(for a project he is working on); since Anthony has not
marked it as “interesting”, it should not appear to display this
property, or be returned from queries for interesting docu-
ments. However, both Mike and Anthony will see the
properties directly attached to the base document (the “base
properties”); these are properties relevant to everyone, such
as the size of the document. Our approach allows users to
query each other’s spaces, so that they can essentially ask
“show me the documents that Mike thinks are interesting”—
a form of collaborative filtering [9].

A PROPERTY-BASED DOCUMENT INFRASTRUCTURE
Our prototype, Presto, is an early embodiment of these ideas.
We had two principal goals in developing Presto. The first
goal was to develop a platform for everyday document man-
agement organised entirely in terms of properties. By
developing this platform, we wanted to explore, first,
whether the approach was practical; second, what the inter-
actional consequences might be of a property-based
approach; and third, how such a model could be integrated
with existing document applications. These issues will
occupy us for most of this paper. The second goal was to use
this platform to work with potential customers to elicit
requirements for a larger design effort around a richer prop-
erty model. In the later parts of the paper, we will discuss
some of these efforts and the lessons learned from them.

Properties and Documents
Although Presto’s basic entities are documents, it does not
store document content. Instead, Presto makes use of exter-

nal document repositories such as file systems or the World
Wide Web. Presto itself stores just the document properties.

This separation of document properties and document stor-
age provides a number of advantages. First, it means that
properties constitute a uniform document management para-
digm across disparate substrates. I can store, search and
manipulate web documents and file system documents with
precisely the same mechanisms (and, indeed, in everyday
interaction, I may not know or care which are which). Sec-
ond, it integrates those various substrates, allowing
documents to be managed collectively even though they may
“live” in separate repositories. Third, it provides us an oppor-
tunity to separate the notion of “document” from the notion
of “file”. A document need not correspond exactly to a single
file; it may integrate the content of multiple files, refer to
only a segment of a file, or not correspond to any real stored
content at all.

Since users may have different meanings for properties, their
values are untyped. Coordination is achieved simply through
a hierarchical property naming scheme.

Queries
All documents respond to a common interface for attaching
properties, reading their value, and removing them. The doc-
ument space can be queried according to property values.
Since document queries are the primary means by which
users interact with document spaces, we require that query
performance be good. On a small database (342 documents,
4911 properties), the query “Mail.From=dourish” takes
30ms to return 8 documents, while “Type=text/html or
Type=text/java and read within 1 month” takes 140ms to
return 32 documents. On a larger database (2558 documents
and 27921 properties) the same queries take 90ms (8 docu-
ments) and 620ms (300 documents) respectively.2 This is
fast enough to achieve our primary goal, a feeling of directly
manipulating the document space, rather than the usual “sub-
mit a query, await the results” model.

Properties and Collections
Properties apply to documents, but we also need a way of
grouping documents and acting on them collectively. Presto
provides collections for this purpose. Unlike queries, which
are transient searches over the document space, collections
are persistent entities that group documents. At the same
time, collections are also a type of document, and so all core
document operations apply to them. They can have proper-
ties attached, and can themselves be added to collections.

Collections in Presto play roughly the same role that folders
and directories do in other systems. There are some signifi-
cant differences, though. The two primary ones are that, first,
documents can appear in multiple collections (or none at all),
and, second, that collection membership can be organised
dynamically according to document properties.

Since Presto document content might be stored in various
possible repositories, such as filesystems or the Web, this
means that collections in fact integrate content from different

FIGURE 2: Documents can contain references to other doc-
uments, allowing each user a separate set of properties for

the same base document.

Paul

Anthony

Mike

base document

reference

2. These times are the mean of 15 trials on a 200MHz Pentium Pro.

stores. A single collection can mix documents from different
locations. So, the logical organisation that collections offer is
not limited by the fact that document content may actually
live in different places; I can keep all my project documents
together wherever they are stored.

The goal of the collection design was to allow users to orga-
nise their document space in terms of properties. Since the
set of properties defined on documents and the values of
those properties are subject to change continually, it follows
that the membership of collections is also dynamic. Dynamic
collections are very powerful, but they present difficulties in
interactive systems. When a collection’s members are being
continually recalculated, it is hard to interact with the collec-
tion; documents appear and disappear under your feet. When
developing Presto, we needed a richer collection design to
support stable interaction.

Fluid Collections
One solution to these problems would be to allow manipula-
tions of the collection members to indirectly manipulate the
query. While this approach may be suitable for some appli-
cations, it also has a number of problems. First, it is hard to
give a coherent account to end-users of how their document
manipulations will result in transformations of the query.3

Second, the query itself becomes more complicated as
exceptions and additions are made to it. We want to be able
to maintain the coherence of the query. Further manipula-
tions express features of the collection, not of the query.

As an alternative, we adopted a design we call “fluid collec-
tions.” Collection membership is defined by three
components: the query, the inclusion list and the exclusion
list. The query component is a query in the Presto query lan-
guage that defines a set of documents according to their
properties; all documents matching the query are members
of the collection. For example, I might have a collection
titled “Recently Used Documents” with the query compo-
nent “used within 5 minutes – collection” (all documents
read or written within the last five minutes, excluding collec-
tions). All documents matching the query at any given
moment will be members of the collection. Similarly, I can
define a collection to be my electronic mail “inbox” by set-
ting its query component to be “mail.status=unread”; as I
read messages, they automatically disappear from the collec-
tion since the query no longer applies.

The two other components of fluid collections serve to
modify the query component. The inclusion list contains a
set of documents that should be included in the collection
even if they do not match the query. In turn, the exclusion list
contains a set of documents that should be excluded from the
collection even if they do match the query. The result is that
fluid collections allow static modifications to the dynamic
query, preserving stability for user interactions. When I look
at a collection whose members are given by a dynamic
query, I can still manipulate the collection—drag new docu-
ments into it (adding them to the inclusion list) and dragging
others out (adding them to the exclusion list)—and even

though the query is still “live”, my changes will be
preserved.

Each of the three query components can be null. In the case
where the inclusion and exclusion lists are null, the collec-
tion behaves exactly like a normal query. In the case where
the query component is null, the static lists serve to define
the membership of the collection, and so it behaves just like
a folder in that it contains only and exactly what the user has
put there4. So, fluid collections can simulate the behaviour of
purely static and purely dynamic collections as well as a
middle ground which is dynamic but stable.

Properties and Services
Since properties are the primary mechanism for all document
interactions in Presto, it follows that the power of the system
depends on the range of properties attached to documents.
Our model is that “there’s no such thing as too many proper-
ties”; any property that a user might need to organise or
retrieve their documents should already be there if we can
put it there. However, although we allow users to attach arbi-
trary properties to documents, representing whatever
characteristics of documents they deem relevant, the system
would be cumbersome if the system stored only properties
that had been explicitly added. In Presto, we address this by
allowing system components to add properties too. These
components can automatically derive document features to
be recorded in property space. We call these services.

A service is an application which runs over the document
space and adds new properties to documents. Services typi-
cally deal with particular document types and exploit local
knowledge of the structure of documents of that type. For
instance, an email service operates over documents contain-
ing email messages; it can read the contents of the document,
parse the mail headers and annotate the document with prop-
erties describing who the message is from, what is the
subject, and so on. Similarly, an HTML service processes
HTML files and annotates the document with properties
indicating such features as the title, included images and
linked documents, while a Java service parses Java source
files and uses document properties to describe the packages
imported and the methods defined.

In general, then, what services do is to exploit the semantics
of particular document types in order to reflect document
content in the document properties. Services are the only
components of the system that need to be aware of the details
of document format and structure; by making aspects of con-
tent available as properties, they enable a uniform
mechanism for querying and organising the document space
for users. Since everything is encoded as properties, users
can exploit properties as a single mechanism for all their
interactions, and can search over all aspects of documents at
once. So, for example, looking for a document that arrived
by email, I can issue a query that looks not only at the email
properties (such as header information), but also at aspects of
its structure (e.g. heading text) and content (e.g. summary or

3. One could imagine using graphical query mechanisms (e.g.
[10]), but they lack the directness that we were trying to achieve.

4. In practice, this means just the inclusion list, since removing a
document from a collection will first remove it from the inclusion
list if it is present there, before trying to add it to the exclusion list.

keywords). This sort of mixed-application query approach is
not available using other mechanisms.

APPLICATION INTERFACES
What we have described so far is simply an infrastructure on
which property-based document applications can be built.
Our goals for Presto imply a number of requirements for
application interfaces. First, we want to develop new appli-
cations that can exploit the novel features of property-based
document management. Second, we wanted to be able to
reuse existing component software wherever possible.
Finally, we also need to provide compatibility with “legacy”
applications such as Microsoft Word, without modification.
Presto offers three levels of interface for these different
needs.

Supporting Custom Applications
There are two interfaces that we use to develop custom
Presto applications.

First, the Presto object model, structured in terms of docu-
ment objects, properties, queries and collections, is offered
to Java programmers as a set of classes they can use in their
own Java programs. This is the primary mechanism for
building new applications that exploit Presto’s novel fea-
tures.5 Our browsers, for example, are built to this interface,
and the applications we will describe later are custom Java
systems built on top of the Presto code base in this way.

Second, we support the Java IOStreams interface which is
used by Java Beans components. This allows us to incorpo-
rate Beans to view and modify document content. For
instance, our current browsers include third-party Bean com-
ponents for processing image, text and HTML files which
were directly incorporated using this interface. These com-
ponents, then, can be seamlessly integrated, but only within
the context of new applications. This makes it easy to incor-
porate new data types, but does not address the legacy
application problem.

Supporting Legacy Applications
Since people already have a significant investment in their
documents and document tools, we need to be able to support
these in Presto. However, legacy applications like Word do
not understand how Presto manages document content and
properties, and extending it to do so is not feasible, espe-
cially when we consider the wide range of applications that
might have to be modified in this way. Instead, we take a dif-
ferent approach.

The common feature of these legacy applications is that they
expect to run on a filesystem. Our solution is, essentially, to
give them one. Presto exports access to its documents using
the standard Networked File System (NFS) protocol. A
Presto data store can be mounted as a new networked disk
from the perspective of the client machine; filesystem reads
and writes will act on the Presto documents indirectly. Word
need never know that it’s talking to Presto.

Our NFS protocol is implemented as a Presto application. It
uses a Java RPC implementation and offers the NFS RPC
protocol, which it then translates into requests to the Presto
object model. However, this “translation” is not entirely
straightforward, since the semantics offered by Presto are not
the same as those of a conventional filesystem. In actual use,
applications depend on a number of invariant properties of
filesystems that do not hold in Presto, and so our implemen-
tation needs to work around these. We will discuss four here.

1. In a conventional filesystem, there is a top-level direc-
tory. Clearly, this is not true in Presto. The NFS server
maintains a “virtual” top level directory, which is a
query for documents with the property “Root=true”.

2. In a conventional filesystem, all files are reachable along
some path from the top level. Since Presto documents
need not appear in any collection at all, this is not true
for us either. To solve this, the NFS server recognises a
special syntax in directory names as indicating a query.
So, for example, the path “/#type=html” names a direc-
tory containing the results of a query for all documents
with property “type=html”. Since each document can be
retrieved by a query using its unique document ID, this
means that any document can be named in the filespace.
(This is similar to Semantic File Systems [8]).

3. In a conventional filesystem, the combination of direc-
tory and filename uniquely identifies a file. In Presto,
however, documents have an intrinsic identity regardless
of where they appear and what properties they hold. This
becomes relevant when an application updates a file by
renaming the old document and then writing a new one
with the same name in its place. In most filesystems, this
replaces the old file; in Presto, it creates a new one. The
NFS server recognises this sequence of action and
restores the original document (and hence, the original
properties) with the content of the new one.

4. In a conventional filesystem, two files in the same direc-
tory will always appear together. This means that an
application can safely store related information along-
side (i.e. in the same directory as) an original file and
expect to find it in the same directory later. However, in
Presto, a document can appear in multiple collections,
and so the related information will not always appear in
the same place. If a document appears in the “important”
collection, for instance, that does not mean that the spell-
ing dictionary is also “important”. Our NFS server
detects attempts to create related files of this sort, and
notes the relationship as a property on the secondary
document. When the application is run in future, the
server searches for all related documents and tempo-
rarily reinstantiates them.

So, since the goal of the NFS server is to support the use of
legacy filesystem-based applications, it is not enough simply
to support what filesystems do; we must also support the way
that filesystems are used. To this end, techniques like these
can preserve the invariants upon which traditional applica-
tions depend, and so integrate them into a Presto-based
document management system.

5. Presto is implemented 100% in Java. It is based on Java 1.1, and
uses JDBC for database interactions, and Swing for its user inter-
faces. We run it on both Windows and Solaris platforms.

INTERACTION CHALLENGES
A property-based document infrastructure such as that
embodied by Presto presents interesting challenges for inter-
action design. On the one hand, we must exploit the familiar
models of document interaction which are presented by tra-
ditional interface designs; and on the other, we want to be
able to capitalise on the novel features provided by a prop-
erty-based infrastructure. In the interfaces we have
developed, we have encountered a number of these chal-
lenges. In this section, we will discuss some of these with
particular reference to Vista, a desktop-like workspace
browser for Presto.

One Document, Many Icons
One interesting way in which a property-based document
system differs from a filesystem is that a document may
appear in a number of different collections at once. It follows
that in an interface to the document space, any given docu-
ment may appear multiple times on the same screen. For
instance, suppose my window contains two collections, each
of which has a dynamic query. The first dynamically con-
tains all documents related to the Presto project, while the
other dynamically contains all documents containing pur-
chase orders. A document detailing the purchase of a server
for Presto will necessarily appear in both of these collections
(and quite possibly others too). In a Presto browser, this sit-
uation arises naturally, and so must be accommodated by the
interface.

In Vista, we allow multiple documents to appear in a work-
space, but avoid the situation where two documents appear
in the same context—that is, a document cannot appear more
than once in any given collection, or more than once on the
desktop. If the user attempts to move a document into a con-
text where it already appears, then the “second” appearance
will merge with the first when the user releases the mouse.

Controlling Dynamic Queries
Earlier, we discussed the way that document collections
embody queries over the document space. Queries are typi-
cally constructed in a textual query language, but we wanted

to provide users with a means for direct manipulation of que-
ries, and the sense of immediacy that engenders. One
solution to this is to use property objects not simply as enti-
ties which can be assigned to documents, but also as terms
from which queries can be constructed.

One implementation works as follows. When a user creates
a new collection object, it is initially completely empty. At
this point, documents can be dragged onto it; they will be
added to the inclusion list and appear in the collection, and
in this way the collection behaves like a traditional desktop
folder. However, if a property term is dragged onto the col-
lection, then it becomes a query term for that folder. So, if I
drag the property “project=presto” onto an open collection,
then the term “project=presto” is set as the query term for
that collection, and documents matching the query will
appear inside the collection. This process can be repeated,
with any number of query terms added to or removed from
collection query; the collection shows the current query
terms around its edge (figure 4).

As new documents match the query, they are immediately
displayed in all matching collection windows. The inclusion
and exclusion lists described earlier provide a way to per-
form stable manipulations to live query sets. Rather than
complicate the interface by exposing the three-part structure

FIGURE 3: A snapshot of Vista, a Presto interface. Vista offers multiple Rooms-like workspaces onto the same document data-
base, and displays documents (A), collections (B) and properties (C). Closed collections are shown as piles (D), giving cues as
to their current size. Note that the nature of the system implies that a document may actually appear in multiple places at once (E).

A

B

C

D
E

FIGURE 4: Properties can also be used as query terms on
collections.

of collections, we support manipulation of the inclusion and
exclusion lists through direct interaction with the collection
itself. Dragging a document out of a live collection adds it to
the exclusion list, while dragging a document into the collec-
tion adds it to the exclusion list. To make this manageable,
these operations are also reversible; if a document has been
dragged out of the collection, the dragging it back in will do
the right thing (in this case, remove it from the exclusion list
again). The user gets the sense of these queries as stable,
manipulable collections even though they are realised by
dynamic queries subject to continual re-evaluation.

This style of direct interaction with live queries supports our
goal of providing users with the feeling of a directly manip-
ulable document space. This is in contrast with traditional
“query/response” systems, and more like the UMD work on
“Dynamic Queries” [1] although it’s not tailored to specific
domains. We are considering other techniques for direct
exploration of the document space, such as Magic Lenses
[3].

The Vista browser, then, embodies some specific techniques
that we incorporate in order to create a fluid interactive style
for property-based document management. However, we
can also use the Presto infrastructure to develop special-pur-
pose applications that incorporate more detailed
understandings of particular application domains. With this
in mind, we have been working with various colleagues at
PARC to develop other applications that explore the use of
Presto as an application infrastructure.

APPLICATIONS
We have been working with other PARC research groups to
build applications on top of Presto. Our goals are to evaluate
our system and approach, and to derive requirements for fur-
ther design efforts.

One interesting feature of Presto as an application infrastruc-
ture is that it can essentially serve two roles. First, Presto is
a document management system, providing access to docu-
ment repositories and document content stored there.
Second, Presto is a simple and lightweight object system,
providing a coherent model for storing and retrieving object
attribute information. A number of Presto applications,
including some internal parts of the Presto infrastructure
itself, make use of the Presto property mechanism in this
way, creating “content-less” documents whose significance
resides entirely in the properties defined on them.

We will discuss two examples here. The first makes use of
Presto as an object store supporting the implementation of
novel interaction techniques. The second explores the ways
in which users can control and share structures describing the
space of possible property values.

Magic Office
The Magic Office project at PARC is working on tools that
integrate the work we do in both the physical world and our
computer-mediated virtual worlds. One of its first manifesta-
tions is a computer-augmented whiteboard called Flatland
[13]. Flatland provides an environment in which the white-
board is both an input and an output device. The system
detects users’ strokes on the whiteboard and can generate

new output overlaying or replacing user input. Flatland aims
to support the range of work people do on office whiteboards
everyday; this is in contrast to systems like Tivoli [14] which
are directed towards domain-specific applications such as
meeting support.

This focus on the “everyday content” of the workplace has a
number of implications for the underpinning infrastructure.
First, there is a need for persistence. Flatland is envisioned as
a constantly-available tool in the workplace, which can
remember everything that has taken place on it since it was
installed. Users of the system need to be able to return to past
states of the whiteboard, search for specific pieces of prior
content based on the context of their use, and so on. Since
this requires a very fast interface to users for searching based
on time and context, the infrastructure on which is built must
make these operations not only possible but fast.

Second, Flatland needs to be able to store whiteboard infor-
mation in an extremely light-weight way. Most of the
scribblings on a whiteboard have value precisely because
they are easy to create and easy to retrieve, so requiring users
to drive a “Save as...” dialog would be totally inappropriate.

Third, Flatland needs a way of storing arbitrary bits of appli-
cation state along with the actual whiteboard contents. In the
Flatland architecture, the interpretation of strokes is divorced
from the representation of those strokes on the board. Parcels
of application functionality (called “Behaviours”) can be
dynamically associated with regions of content, lending their
own interpretation and semantics to regions on the board.
These behaviors need a convenient and quick way to associ-
ate application-specific data—which may be meaningful
only to them—with arbitrary content items. Flatland meets
these goals by using Presto as its storage layer.

Flatland creates a separate Presto document for each region
of the board (called a segment). Each document contains a
set of tokens representing the complete history of the seg-
ment associated with it. Histories can be played forward or
backwards to “reset” the segment to any state in its history.
Such a representation—storing the explicit history of an on-
screen entity in a document’s contents—could just as easily
be done in an existing filesystem. The advantage of using
Presto in such a setting comes about from the ease of inte-
grating meta-information about the history into the
document. Using Presto, for instance, we can store “mark-
ers” that index into interesting points in the history as
properties on the document. Multiple markers can coexist at
the same time, and can be updated independently (and
quickly—simply storing the markers in the content, say at
the first of the document, would necessitate rewriting the
entire file when the markers changed).

The property system also enhances our ability to search
through document content. Whiteboard segments containing
text are passed through an off-line handwriting recogniser.
This recogniser attempts to identify text in the segment and
then annotates the content document with a property contain-
ing recognised words. The resulting keywords property can
then be searched quickly without the need to retrieve or parse
the actual stroke-based contents of the segment.

In the Flatland implementation, properties are used to build
interconnections between segments, to provide indices into
the representation of history stored in the content, and to
permit extremely quick search over elements that may be
computationally expensive to derive from the original con-
tent. They are also used to maintain information about the
context of use of segments–where the segment was on the
board, who was involved in its creation, and so on, allowing
all of these contextual elements to be searched directly.

One of the most basic advantages of using Presto is the abil-
ity to create extremely light-weight documents, without the
need to file or even name them. Presto supports the ability to
create unnamed documents. (In Presto, the “name” of a doc-
ument is simply an arbitrary, optional property.) These
documents need not exist in any collections, but can be
retrieved based on their properties. So any new stroke on the
board can potentially result in the creation of a new,
unnamed and unfiled, document. The metaphor used by
some on the Flatland team is that of a “soup” of documents,
strongly interconnected via properties.

Finally, the dynamic behavior mechanisms used by Flatland
are very amenable to implementation atop Presto. One of the
design challenges of Flatland was to build a system in which
arbitrary bits of application code could be dynamically asso-
ciated with a segment, grouped, removed, and reapplied.
These code bits need a flexible way to store their state, asso-
ciate arbitrary state with arbitrary strokes, and rebuild their
state if they are reapplied to a segment. Presto’s hierarchical
property namespace allows application behaviors to “own” a
chunk of the property namespace, and use it for their own
needs without worry of collision with other behaviors. Since
Presto allows arbitrary Java objects to be stored as the values
of properties, the infrastructure essentially is treated as a
lightweight object model for Flatland; each segment which
represents on-screen content has associated with it arbitrary
application data in named slots on the object.

Document Category Management
In another project, we are working with a group of ethnogra-
phers studying the document management practices of a
project group in a California state organisation [6, 17]. This
organisation has an extensive set of procedures for managing
the files for any given project, which can extend to many
shelves of documents packed into folders. For consistency
across projects, they employ a “Universal Filing System”
(UFS) to categorise project files. In practice, the use of the
UFS is more complex than it might appear. Since the UFS is
updated infrequently, and is a very general device, the people
working with the files frequently find that they need to file
documents in categories not supported by the UFS, or that
they need a greater degree of specialisation than the UFS can
provide.

We have been investigating the development of technology
to support this organisation’s document practices. We are
particularly concerned with how the system can exploit the
filing categories fluidly, supporting the perspectives of dif-
ferent users with different local category structures, and
allowing users to share their customisations of the UFS.

There are two challenges in using Presto to support these
document practices. The first results from the fact that, in
designing Presto, we deliberately eschewed any attempts to
control the possible values of properties. Presto leaves the
semantics of properties entirely in the users hands, introduc-
ing no restrictions. The UFS, however, introduces a structure
into the space of values for relevant document properties.
We want to be able to exploit the structure of this space,
especially in queries; for example, a query for documents
whose source is a government agency should correctly
match those documents whose source property is any value
of type “government agency”.

Second, since we want to allow specialisation and refine-
ment of these value space hierarchies, the structures that we
introduce need to be reflected back into the Presto object
space. As local customisations of the UFS are introduced, we
want to be able to provide the means to share these within the
group. Since Presto manages only documents, this implies
that the value space structure introduced above must be con-
cretely realised in the document space so that it can be shared
with others, and further that this encoding be able to capture
the multiple levels of customisation to be able to support this
collaborative, shared refinement of the basic mechanism.
Presto already supports the idea that different users have dif-
ferent views of documents; an explicit value space
representation gives us a way to relate those different views.

As a normal document system, Presto already offers the abil-
ity to store the organisation’s project documents, and record
their properties. The challenge is to use Presto’s “flat” prop-
erty model to reflect the structured properties values of the
UFS. Reflecting the duality of the Presto system, as both
document store and object system, we can take a two-
pronged approach to the problem. First, we create an encod-
ing of the category system as properties and document
objects. Each category in the UFS is represented by a mini-
mal (no content) document object in Presto, and properties
on those documents define a pattern of relationships between
them. So, using links encoded in properties, we can create a
tree of values represented as Presto documents. Once we

+

FIGURE 5: Layered definitions of the structure of a property
value space. The hierarchical structure that results is com-

posed of a sequence of layered modifications.

A

B

A+B

have this structure, we can use it to manage the space of UFS
properties; instead of setting a document property to be the
string “Highways Department”, we can set it to be the docu-
ment representing the “Highways Department” value, and so
link it into our encoding of the UFS. With this structure in
place, we can cause queries over the document properties to
exploit the hierarchy, since property values can now be
located with a hierarchy of values (so that “Highways
Department” is recognised as being a kind of “Government
Agency”, and so will be a valid match for searches for gov-
ernment agencies). This meets our first criterion.

Taking this one step further, we define a whole set of whole
and partial category trees by this same property-encoding
mechanism. Each “layer” is either a simple hierarchy or a set
of modifications to a hierarchy (adding a new item, consoli-
dating two items into one, and so on). Partial trees can be
thought of refinement of a basic hierarchy; each new layer
specifies some change to the layers below, so that the end
result is a hierarchy that incorporates the information from
all the others. This structure is illustrated in figure 5.

With this encoding, the type space can be manipulated not
simply in terms of the basic UFS, but also in terms of local
modifications that have been introduced to it. Since these
modifications can be layered on top of each other, there can
be multiple sets of refinements introduced by work groups,
individuals, etc. Those refinements are explicitly structured
as Presto documents themselves, so they can be collected
together, stored and shared.

We are working on a document browser which allows users
to work in terms of categories defined in this way. Our goal
is to be able to work in terms of these “layered” typologies,
so that users can perform local manipulations to the set of
categories while still allowing the document to be viewed
from the perspective of an earlier or simpler structure.

LESSONS
We developed Presto as an early embodiment of the “prop-
ertied documents” ideas, and as a basis for experimentation
and application development prior to a larger and more
ambitious design effort. Presto has served as an excellent
vehicle for developing and validating our original intuitions,
and while we have not yet conducted any formal user tests,
we have none the less discovered patterns emerging from
informal use and from application development. Some fea-
tures have emerged as more important than we had originally
imagined.

One of the primary experiences of property-based document
interaction is uniformity. All document-related information
appears in the same space (the property space), and can be
viewed, browsed and searched using the same tools. This
makes it easy to integrate information from many different
sources, when documents play multiple roles, since a single
search query can encompass different pieces of information.
What’s more, document property management applies uni-
formly across document storage layers. Documents may be
stored on the Web, on a local filesystem, or elsewhere, but
they can be managed, searched and organised uniformly.
Hierarchies need not be replicated across different storage

repositories, and the information is managed in an integrated
way. This uniformity has proven invaluable.

For end users, one major feature of Presto interactions is the
lower cost of storage. There is no need to find a unique name
for a document, and to find a place to store it where it is
likely to be found again. Instead, our applications can auto-
matically tag data items with any relevant contextual
information (such as the time of day, related documents, and
so forth), any of which can be used to retrieve the document
again.

Integration with existing document applications is crucial to
the appeal of Presto. A key property of Presto is that it pro-
vides its facilities in concert with the existing tools for
managing and interacting with documents. Our NFS imple-
mentation allows us to interoperate with applications that
expect to operate over a traditional filesystem, but without
losing the advantages of property-based interaction.

In applications, we have found that the duality that the Presto
system offers is of great use to application developers. Presto
can be used as both a document system and an object system
simultaneously. In practice, this means that applications tend
to use the same persistent store for both content objects and
for data structures that manage them.

Relatedly, in developing our applications, we have found
that a pattern quickly emerges in which Presto is used, essen-
tially, as an associative store. This exploits the fact that, in
Presto, property values can be arbitrary Java objects, includ-
ing structured data and, for instance, references to other
documents. So, rather than storing data in external files, pro-
grammers use Presto’s “object model” to store their data
structures by attaching objects to documents, and then rely
on queries as a means to reconstitute them afterwards. The
flexibility of extensible properties, and the absence of any
fixed typing, means that data items can be organised into a
variety of data structures fluidly and easily, and can be
recombined and revised as work progresses.

Finally, as a consequence of this model, query performance
turned out to be a critical issue. Since applications rely on
search to build structures, high performance queries are crit-
ical. This also allows us to rely on queries as a fundamental
part of the user interaction model. Presto’s speedy response
to document queries allowed us to provide an interactive
experience based around the direct manipulation of dynamic
document objects, rather than around a traditional “submit a
query, await a response” model. Interaction is based on using
queries to explore the space, rather than relying on structural
properties and with only occasional use of heavyweight,
expensive queries.

RELATED WORK
Lifestreams [7] uses a timeline as the major organisational
resource for document spaces. Like our approach,
Lifestreams is inspired by the problems of a standard single-
inheritance file hierarchy, and instead seeks to use contextual
information to guide document retrieval. Unlike our
approach, however, Lifestreams replaces one superordinate
aspect of the document (its location in the hierarchy) with
another (its location in the timeline).

Semantic File Systems [8] introduce the notion of “virtual
directories” that are implemented as dynamic queries on
databases of document characteristics. With the NFS server
implementation, Presto essentially provides the same sort of
functionality which was provided by the Semantic File Sys-
tem. However, Gifford and his colleagues were largely
concerned with direct integration into a filesystem so that
they could extend the richness of command line program-
ming interfaces, and so they introduced no interface features
at all other than the file name/query language syntax. In con-
trast, our concern is with how such an attribute-based system
can be used day-to-day, and with how our interfaces can be
revised and augmented to deal with it; Presto acts as a file-
system simply in order to support legacy filesystem-based
applications, rather than as an end in itself.

DLITE [5], a user interface for accessing digital library
resources, explicitly reifies queries and search engines, pro-
viding users with direct access to dynamic collections. The
goal of DLITE, however, is to provide a unified interface to
a variety of search engines, rather than to create new models
of searching and retrieval. So although DLITE queries are
independent of particular search engines, they are not inte-
grated with collections as a uniform organisational
mechanism as they are in the Presto interfaces.

In terms of its simple object model, Presto is more akin to
prototype-based systems like Self than it is to more tradi-
tional class-based languages like Smalltalk. Self, of course,
offers a much richer programming model, but the design of
Vista is also inspired by the directness and concreteness
explored in the various Self user interfaces [4, 15].

CONCLUSIONS
We have been investigating a new approach to document
management based on document properties. Properties
encode information about a document and offer the potential
to provide a uniform mechanism for document storage, man-
agement, retrieval and interaction. In addition, they allow us
to organise the document management experience according
to the needs of individual document consumers.

Presto is a platform for exploring this space. Our experience
with applications has reinforced the value of this particular
set of design choices. Presto’s dual nature, as document
system and associative object store, naturally supports not
only a wide range of application which need to be able to
provide fluid structures over a “document soup”, but also
those requiring the creation of more structured interaction.

Presto originated in work on the Placeless Documents
project. Based on this experiment, we are currently exploit-
ing the lessons we have learned in the development of the
larger Placeless Documents prototype. Placeless Documents
backs up the conceptual framework of propertied documents
with a secure distributed infrastructure, and extends these
ideas by incorporating live objects into the document space,
opening up new areas for novel interactive document system
development.

ACKNOWLEDGMENTS
The other members of the Placeless Documents project—
John Lamping, Karin Petersen, Doug Terry and Jim Thorn-

ton—have contributed deeply to this work. We would also
like to thank Tom Rodden for invaluable contributions.

REFERENCES
1. C. Ahlberg, C. Williamson and B. Schneiderman, “Dynamic

Queries: An Implementation and Evaluation”, Proc. ACM
Conf. Human Factors in Computing Systems CHI’92
(Monterey, CA), May 1992.

2. D. Barreau and B. Nardi, “Finding and Reminding: File
Organization from the Desktop”, SIGCHI Bulletin, 27(3), July
1995.

3. E. Bier, M. Stone, K. Pier, W. Buxton and T. DeRose,
“Toolglass and Magic Lenses: The See-Through Interface”, in
Proc. SIGGRAPH’93 (Anaheim, CA), August 1993.

4. B. Chang and D. Ungar, “Animation: From Cartoons to the
User Interface”, Proc. ACM Symp. User Interface Software and
Technology UIST’93, October 1993.

5. S. Cousins, A. Paepcke, T. Winograd, E. Bier and K. Pier, “The
Digital Library Integrated Task Environment”, Technical
Report SIDL-WP-1996-0049, Stanford Digital Libraries
Project (Palo Alto, CA), 1996.

6. P. Dourish, J. Lamping and T. Rodden, “Building Bridges:
Customisation and Mutual Intelligibility in Shared Category
Management”,to appear in Proc. GROUP’99, 1999.

7. E. Freeman and S. Fertig, “Lifestreams: Organizing your
Electronic Life”, AAAI Fall Symposium: AI Applications in
Knowledge Navigation and Retrieval (Cambridge, MA),
November 1995.

8. D. Gifford, P. Jouvelot, M. Sheldon and J. O’Toole, “Semantic
File Systems”, in Proc. Thirteenth ACM Symposium on
Operating Systems Principles (Pacific Grove, CA), October
1991.

9. S. Jones, “Graphical Query Specification and Dynamic Result
Previews for a Digital Library”, Proc. ACM Symp. User
Interface Software and Technology UIST’98, Nov. 1998.

10. D. Goldberg, D. Nichols, B. Oki and D. Terry, “Using
Collaborative Filtering to Weave an Information Tapestry”,
Communications of the ACM, 35(12), December 1992.

11. R. Mander, G. Salomon and Y.-Y. Wong, “A ‘Pile’ Metaphor
for Supporting Casual Organization of Information”, Proc.
ACM Conf. Human Factors in Computing Systems CHI’92
(Monterey, CA), May 1992.

12. C. Marshall and R. Rogers, “Two Years before the Mist:
Experiences with Aquanet”, Proc. European Conf. on
Hypertext ECHT’92, December 1992.

13. B Mynatt, T. Igarashi, K. Edwards, and A. LaMarca, “Flatland:
New Dimensions for Office Whiteboards”, Proc. ACM Conf.
Human Factors in Computing Systems CHI’99 (Pittsburgh,
PA), May 1996.

14. E. Pedersen, K. McCall, T. Moran and F. Halasz, “Tivoli: An
Electronic Whiteboard for Informal Workgroup Meetings”,
Proc. InterCHI’93 (Amsterdam, The Netherlands), May 1993.

15. R. Smith, J. Maloney and D. Ungar, “The Self-4.0 User
Interface: Manifesting a System-wide Vision of Concreteness,
Uniformity and Flexibility”, Proc. ACM Conf. Object-Oriented
Programming Systems, Languages and Applications
OOPSLA’95 (Austin, TX), 1995.

16. Sun Microsystems, Network File System Protocol Specification
(RFC 1049), DDN Network Information Center, SRI
International (Menlo Park, CA), March 1989.

17. R. Trigg, J. Blomberg and L. Suchman, “Moving Document
Collections Online: The Evolution of a Shared Repository”,
Proc. European Conf. Computer-Supported Cooperative Work
ECSCW’99 (Copenhagen, Denmark), September 1999.

